Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6617): 250-251, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264810

RESUMO

Scaling down spectrometers could allow their application in consumer devices.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159666

RESUMO

Two-dimensional transition metal dichalcogenides (2D-TMDs) are among the most promising materials for exploring and exploiting exciton transitions. Excitons in 2D-TMDs present remarkably long lifetimes, even at room temperature. The spectral response of exciton transitions in 2D-TMDs has been thoroughly characterized over the past decade by means of photoluminescence spectroscopy, transmittance spectroscopy, and related techniques; however, the spectral dependence of their electronic response is still not fully characterized. In this work, we investigate the electronic response of exciton transitions in monolayer MoSe2 via low-temperature photocurrent spectroscopy. We identify the spectral features associated with the main exciton and trion transitions, with spectral bandwidths down to 15 meV. We also investigate the effect of the Fermi level on the position and intensity of excitonic spectral features, observing a very strong modulation of the photocurrent, which even undergoes a change in sign when the Fermi level crosses the charge neutrality point. Our results demonstrate the unexploited potential of low-temperature photocurrent spectroscopy for studying excitons in low-dimensional materials, and provide new insight into excitonic transitions in 1L-MoSe2.

3.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34945426

RESUMO

Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-dimensional semiconductors directly from the simple transfer characteristics. In this work, we present an overview of the operation principles of ionic liquid gating in TMD-based transistors, establishing the importance of the reference voltage to obtain hysteresis-free transfer characteristics, and hence, precisely determine the band gap. We produced ILG-based bilayer WSe2 FETs and demonstrated their ambipolar behavior. We estimated the band gap directly from the transfer characteristics, demonstrating the potential of ILG as a spectroscopy technique.

4.
Nanoscale ; 13(38): 16156-16163, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34543368

RESUMO

Two-dimensional transition metal dichalcogenide (TMD) phototransistors have been the object of intensive research during the last years due to their potential for photodetection. Photoresponse in these devices is typically caused by a combination of two physical mechanisms: the photoconductive effect (PCE) and photogating effect (PGE). In earlier literature for monolayer (1L) MoS2 phototransistors, PGE is generally attributed to charge trapping by polar molecules adsorbed to the semiconductor channel, giving rise to a very slow photoresponse. Thus, the photoresponse of 1L-MoS2 phototransistors at high-frequency light modulation is assigned to PCE alone. Here we investigate the photoresponse of a fully h-BN encapsulated monolayer (1L) MoS2 phototransistor. In contrast with previous understanding, we identify a rapidly-responding PGE mechanism that becomes the dominant contribution to photoresponse under high-frequency light modulation. Using a Hornbeck-Haynes model for the photocarrier dynamics, we fit the illumination power dependence of this PGE and estimate the energy level of the involved traps. The resulting energies are compatible with shallow traps in MoS2 caused by the presence of sulfur vacancies.

5.
Open Res Eur ; 1: 98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645138

RESUMO

Optoelectronic device characterization requires to probe the electrical transport changes upon illumination with light of different incident powers, wavelengths, and modulation frequencies. This task is typically performed using laser-based or lamp + monochromator-based light sources, that result complex to use and costly to implement. Here, we describe the use of multimode fiber-coupled light-emitting diodes (LEDs) as a simple, low-cost alternative to more conventional light sources, and demonstrate their capabilities by extracting the main figures of merit of optoelectronic devices based on monolayer MoS 2, i.e. optical absorption edge, photoresponsivity, response time and detectivity. The described light sources represent an excellent alternative for performing optoelectronic characterization experiments on a limited budget.

6.
Nat Commun ; 9(1): 3346, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131488

RESUMO

In monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPCs) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe2 monolayer. The dependence on bias and gate voltages reveals two different CPC contributions, dominant at different voltages and with different dependence on illumination wavelength and incidence angles. We theoretically analyze symmetry requirements for effects that can yield CPC and compare these with the observed angular dependence and symmetries that occur for our device geometry. This reveals that the observed CPC effects require a reduced device symmetry, and that effects due to Berry curvature of the electronic states do not give a significant contribution.

7.
Nano Lett ; 16(5): 2931-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27042865

RESUMO

Controlling the bandgap through local-strain engineering is an exciting avenue for tailoring optoelectronic materials. Two-dimensional crystals are particularly suited for this purpose because they can withstand unprecedented nonhomogeneous deformations before rupture; one can literally bend them and fold them up almost like a piece of paper. Here, we study multilayer black phosphorus sheets subjected to periodic stress to modulate their optoelectronic properties. We find a remarkable shift of the optical absorption band-edge of up to ∼0.7 eV between the regions under tensile and compressive stress, greatly exceeding the strain tunability reported for transition metal dichalcogenides. This observation is supported by theoretical models that also predict that this periodic stress modulation can yield to quantum confinement of carriers at low temperatures. The possibility of generating large strain-induced variations in the local density of charge carriers opens the door for a variety of applications including photovoltaics, quantum optics, and two-dimensional optoelectronic devices.

8.
Nat Commun ; 7: 11043, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984768

RESUMO

The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.

9.
Nanotechnology ; 27(11): 115705, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876671

RESUMO

The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...