Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080418

RESUMO

Melatonin (MEL), an indolamine with diverse functions in the brain, has been shown to produce antidepressant-like effects, presumably through stimulating neurogenesis. We recently showed that the combination of MEL with ketamine (KET), an NMDA receptor antagonist, has robust antidepressant-like effects in mice, at doses that, by themselves, are non-effective and have no adverse effects. Here, we show that the KET/MEL combination increases neurogenesis in a clone derived from human olfactory neuronal precursors, a translational pre-clinical model for effects in the human CNS. Neurogenesis was assessed by the formation of cell clusters > 50 µm in diameter, positively stained for nestin, doublecortin, BrdU and Ki67, markers of progenitor cells, neurogenesis, and proliferation. FGF, EGF and BDNF growth factors increased the number of cell clusters in cultured, cloned ONPs. Similarly, KET or MEL increased the number of clusters in a dose-dependent manner. The KET/MEL combination further increased the formation of clusters, with a maximal effect obtained after a triple administration schedule. Our results show that the combination of KET/MEL, at subeffective doses that do not produce adverse effects, stimulate neurogenesis in human neuronal precursors. Moreover, the mechanism by which the combination elicits neurogenesis is meditated by melatonin receptors, CaM Kinase II and CaM antagonism. This could have clinical advantages for the fast treatment of depression.


Assuntos
Ketamina , Melatonina , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Hipocampo/metabolismo , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Neurogênese , Neurônios
2.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502152

RESUMO

Major depressive disorder is a disabling disease with the number of affected individuals increasing each year. Current antidepressant treatments take between three to six weeks to be effective with forty percent of patients being resistant to treatment, making it necessary to search for new antidepressant treatments. Ketamine, a phencyclidine hydrochloride derivative, given intravenously, induces a rapid antidepressant effect in humans. In mice, it causes increased neurogenesis and antidepressant-like effects. However, it also produces psychomimetic effects in humans and in rodents increases the locomotor activity. In contrast, melatonin, a hormone secreted by the pineal gland and synthesized in extrapineal sites, increases new neuron formation and causes antidepressant-like effects in adult rodents with no collateral effects. Here, we assessed the effects of a non-effective dose of ketamine in combination with melatonin (KET/MEL), both on neurogenesis as well as on the antidepressant-like effect in mice. Our results showed that KET/MEL combination increased neurogenesis and produced antidepressant-like effects without altering locomotor activity after both single and triple administration protocols. Our data strongly suggest that KET/MEL combination could be used to simultaneously promote neurogenesis, reverting neuronal atrophy and inducing antidepressant-like effects.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ketamina/uso terapêutico , Melatonina/uso terapêutico , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Ketamina/administração & dosagem , Ketamina/farmacologia , Masculino , Melatonina/administração & dosagem , Melatonina/farmacologia , Camundongos , Neurogênese/efeitos dos fármacos
3.
Int J Mol Sci ; 19(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081472

RESUMO

Melatonin is synthesized by the pineal gland with a circadian rhythm in synchrony with the environmental light/dark cycle. A gradual increase in circulating levels of melatonin occur after lights off, reaching its maximum around the middle of the dark phase. Agonists of melatonin receptors have proved effectiveness as antidepressants in clinical trials. However, there is contradictory evidence about the potential antidepressant effect of melatonin itself. Herein we studied melatonin administration in mice at two zeitgeber times (ZT; ZT = 0 lights on; 12:12 L/D), one hour before the beginning (ZT11) and at the middle (ZT18) of the dark phase after either a single or a three-dose protocol. Behavioral despair was assessed through a forced-swimming test (FST) or a tail suspension test (TST), at ZT18.5. A single dose of 4 mg/kg melatonin at ZT11 was effective to reduce the immobility time in both tests. However, acute administration of melatonin at ZT18 was not effective in mice subjected to FST, and a higher dose (16 mg/kg) was required to reduce immobility time in the TST. A three-dose administration protocol of 16 mg/kg melatonin (ZT18, ZT11, and ZT18) significantly reduced immobility time in FST. Data indicate that the timely administration of melatonin could improve its antidepressant-like effect.


Assuntos
Antidepressivos/uso terapêutico , Melatonina/uso terapêutico , Animais , Antidepressivos/sangue , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Masculino , Melatonina/sangue , Camundongos , Natação/fisiologia
4.
Br J Pharmacol ; 175(16): 3200-3208, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29512136

RESUMO

Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Assuntos
Ritmo Circadiano/fisiologia , Depressão/tratamento farmacológico , Melatonina/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Melatonina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...