Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 473, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199018

RESUMO

BACKGROUND: Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS: SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS: Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.


Assuntos
Arabidopsis , Eriobotrya , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Hortic Res ; 8(1): 261, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848702

RESUMO

DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.

3.
Front Plant Sci ; 11: 1288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973847

RESUMO

Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...