Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512608

RESUMO

Silicon-based microchannel technology offers unmatched performance in the cooling of silicon pixel detectors in high-energy physics. Although Si-Si direct bonding, used for the fabrication of cooling plates, also meets the stringent requirements of this application (its high-pressure resistance of ~200 bar, in particular), its use is reported to be a challenging and expensive process. In this study, we evaluated two alternative bonding methods, aiming toward a more cost-effective fabrication process: Si-Glass-Si anodic bonding (AB) with a thin-film glass, and Au-Au thermocompression (TC). The bonding strengths of the two methods were evaluated with destructive pressure burst tests (0-690 bar) on test structures, each made of a 1 × 2 cm2 silicon die etched with a tank and an inlet channel and sealed with a plain silicon die using either the AB or TC bonding. The pressure resistance of the structures was measured to be higher for the TC-sealed samples (max. 690 bar) than for the AB samples (max. 530 bar), but less homogeneous. The failure analysis indicated that the AB structure resistance was limited by the adhesion force of the deposited layers. Nevertheless, both the TC and AB methods provided sufficient bond quality to hold the high pressure required for application in high-energy physics pixel detector cooling.

2.
Lab Chip ; 23(12): 2854-2865, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37255014

RESUMO

Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image ≈1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of ≈150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.

3.
Microsyst Nanoeng ; 8: 129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533261

RESUMO

Atomic devices such as atomic clocks and optically-pumped magnetometers rely on the interrogation of atoms contained in a cell whose inner content has to meet high standards of purity and accuracy. Glass-blowing techniques and craftsmanship have evolved over many decades to achieve such standards in macroscopic vapor cells. With the emergence of chip-scale atomic devices, the need for miniaturization and mass fabrication has led to the adoption of microfabrication techniques to make millimeter-scale vapor cells. However, many shortcomings remain and no process has been able to match the quality and versatility of glass-blown cells. Here, we introduce a novel approach to structure, fill and seal microfabricated vapor cells inspired from the century-old approach of glass-blowing, through opening and closing single-use zero-leak microfabricated valves. These valves are actuated exclusively by laser, and operate in the same way as the "make-seals" and "break-seals" found in the filling apparatus of traditional cells. Such structures are employed to fill cesium vapor cells at the wafer-level. The make-seal structure consists of a glass membrane that can be locally heated and deflected to seal a microchannel. The break-seal is obtained by breaching a silicon wall between cavities. This new approach allows adapting processes previously restricted to glass-blown cells. It can also be extended to vacuum microelectronics and vacuum-packaging of micro-electro-mechanical systems (MEMS) devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...