Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(14): e0084822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762754

RESUMO

Viral gastroenteritis has a global distribution and represents a high risk for vulnerable population and children under 5 years due to acute diarrhea, fever and dehydration. Human astroviruses (HAstV) have been identified as the third most important cause of viral gastroenteritis in pediatric and immunocompromised patients. Furthermore, HAstV has been reported in biopsies taken from patients with encephalitis, meningitis and acute respiratory infection, yet it is not clear how the virus reaches these organs. In this work we have tested the possibility that the released astrovirus particles could be associated with extracellular vesicles. Comparison between vesicles purified from HAstV Yuc8 infected and mock-infected cells showed that infection enhances production of vesicles larger than 150 nm. These vesicles contain CD63 and Alix, two markers of vesicular structures. Almost 70% of the extracellular virus present in clarified supernatant at 18 h postinfection was found associated with vesicular membranes, and this association facilitates cell infection in the absence of trypsin activation and protects virions from neutralizing antibodies. Our findings suggest a new pathway for HAstV spread and might represent an explanation for the extra-intestinal presence of some astrovirus strains. IMPORTANCE Astroviruses are an important cause of diarrhea in vulnerable population, particularly children; recently some reports have found these viruses in extra-intestinal organs, including the central nervous system, causing unexpected clinical disease. In this work, we found that human astrovirus strain Yuc8 associates with extracellular vesicles, possibly during or after their cell egress. The association with vesicles doubled astrovirus infectivity in less susceptible cells and rendered virus particles insensitive to neutralization by antibodies. These data suggest that extracellular vesicles could represent a novel pathway for astrovirus to disseminate outside the gastrointestinal tract.


Assuntos
Infecções por Astroviridae , Vesículas Extracelulares , Gastroenterite , Mamastrovirus , Anticorpos Neutralizantes , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Vesículas Extracelulares/virologia , Gastroenterite/virologia , Humanos , Mamastrovirus/imunologia
2.
Viruses ; 12(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708544

RESUMO

Rotaviruses are the leading cause of viral gastroenteritis among children under five years of age. Rotavirus cell entry has been extensively studied; however, rotavirus cell release is still poorly understood. Specifically, the mechanism by which rotaviruses leave the cell before cell lysis is not known. Previous works have found rotavirus proteins and viral particles associated with extracellular vesicles secreted by cells. These vesicles have been shown to contain markers of exosomes; however, in a recent work they presented characteristics more typical of microparticles, and they were associated with an increase in the infectivity of the virus. In this work, we purified different types of vesicles from rotavirus-infected cells. We analyzed the association of virus with these vesicles and their possible role in promotion of rotavirus infection. We confirmed a non-lytic rotavirus release from the two cell lines tested, and observed a notable stimulation of vesicle secretion following rotavirus infection. A fraction of the secreted viral particles present in the cell supernatant was protected from protease treatment, possibly through its association with membranous vesicles; the more pronounced association of the virus was with fractions corresponding to cell membrane generated microvesicles. Using electron microscopy, we found different size vesicles with particles resembling rotaviruses associated from both- the outside and the inside. The viral particles inside the vesicles were refractory to neutralization with a potent rotavirus neutralizing monoclonal antibody, and were able to infect cells even without trypsin activation. The association of rotavirus particles with extracellular vesicles suggests these might have a role in virus spread.


Assuntos
Vesículas Extracelulares/virologia , Infecções por Rotavirus/metabolismo , Rotavirus/metabolismo , Células CACO-2/virologia , Vesículas Extracelulares/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Rotavirus/ultraestrutura , Vírion/metabolismo , Liberação de Vírus
3.
Carbohydr Polym ; 220: 110-117, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196528

RESUMO

High quality cellulose nanoparticles (CNP) were isolated from water hyacinth stem cellulose (Cel-WH) extracted via successive thermochemical and alkaline-peroxide treatments, and further enzymatically hydrolysed using the commercial cellulase complex, NS22086, at 50ºC. The maximum CNP concentration was reached after 120 min of enzymatic hydrolysis, with a hydrodynamic diameter in the order of 200-250 nm and an increase of 5% in crystallinity as compared with Cel-WH. The obtained rod-shaped cellulose nanocrystals, as revealed by atomic force microscopy (AFM), exhibited a nominal diameter of 15.6-29.4 nm, a length of 56-184.8 nm, and a height of 2.85-6.43 nm, indicating a low tendency to form aggregates. In the present study, it was found that water hyacinth stems are a valuable source for the isolation of high-quality CNP using an environmentally friendly procedure, with potential applications in nanomedicine and nanopharmacology.


Assuntos
Celulose/química , Eichhornia/química , Nanopartículas/química , Caules de Planta/química , Celulase/química , Hidrólise , Microscopia de Força Atômica/métodos , Nanomedicina/instrumentação , Difração de Raios X/métodos
4.
Spectrochim Acta Part B At Spectrosc ; 116: 21-27, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27076699

RESUMO

This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

5.
ACS Nano ; 7(9): 7833-43, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23964846

RESUMO

A quartz crystal microbalance with dissipation (QCM-D) monitoring can be an alternative tool to characterize nanoparticle size by virtue of its acoustic principle to sense adsorbed mass. In this study, sizes obtained by QCM-D for polymer-coated metallic nanoparticles and polydisperse polystyrene latex particle suspensions were compared with those obtained by transmission electron microscopy (TEM) and dynamic light scattering (DLS). We describe the obtained "QCM-D mass", which is weighted over surface area, by a general particle height distribution equation that can be used to determine the average particle diameter of a distribution of particles deposited on the QCM-D surface. Because the particle height distribution equation can be used for any particle geometry and surface packing geometry, it is described how the QCM-D can also be used to study the orientation of deposited nonspherical particles. Herein, the mean nanoparticle sizes obtained by QCM-D were generally in closer agreement with the primary particle size determined by TEM than with the sizes obtained by DLS, suggesting that primarily smaller particles within the particle population deposited on the sensor surface. Overall, the results from this study demonstrate that QCM-D could serve as an alternative and/or complementary means to characterize the size of nanoparticles deposited on a surface from suspensions of varying complexity.


Assuntos
Teste de Materiais/instrumentação , Sistemas Microeletromecânicos/instrumentação , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula , Quartzo/química , Propriedades de Superfície
6.
Environ Sci Technol ; 47(5): 2212-20, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23421856

RESUMO

A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well as organic molecule adsorption onto particle and collector surfaces to avoid underestimating ENP mobility in natural and engineered aquatic environments.


Assuntos
Óxido de Alumínio/química , Nanopartículas/química , Poliestirenos/química , Pontos Quânticos/química , Água/química , Eletrólitos/química , Cinética , Concentração Osmolar , Propriedades de Superfície
7.
Environ Sci Technol ; 46(8): 4449-57, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22423631

RESUMO

Quantum dots (QDs) are one example of engineered nanoparticles (ENPs) with demonstrated toxic effects. Yet, little is known about the behavior of QDs in the natural environment. This study assessed the transport of two commercial carboxylated QDs (CdTe and CdSe) and carboxylated polystyrene latex (nPL) as a model nanoparticle using saturated laboratory-scale columns. The influence of solution ionic strength (IS) and cation type (K(+) or Ca(2+)) on the transport potential of these ENPs was examined in two granular matrices - quartz sand and loamy sand. The retention of all three particles was generally low in the quartz sand columns within the range of studied IS (0.1-100 mM) for the monovalent salt (KCl). In contrast, the retention of the three ENPs in the quartz sand was significant in the presence of 10 mM Ca(2+). Moreover, ENP attachment efficiencies (α) were enhanced by at least 1 order of magnitude in columns packed with loamy sand (for IS between 0.1-10 mM KCl). Although all three ENPs used here are carboxylated, they differ in the type of surface coating (e.g., choice of polymers or polyelectrolytes). Regardless of the surface coatings, the three ENPs exhibit comparable mobility in the quartz sand. However, the ENPs demonstrate variable transport potential in loamy sand suggesting that differences in the binding affinities of surface-modified ENPs for specific soil constituents can play a key role in the fate of ENPs in soils.


Assuntos
Nanopartículas/química , Poliestirenos/química , Pontos Quânticos , Dióxido de Silício/química , Cloreto de Cálcio/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Potássio/química , Propriedades de Superfície
8.
Colloids Surf B Biointerfaces ; 91: 198-204, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119565

RESUMO

The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity.


Assuntos
Nanopartículas , Meios de Cultura , Propriedades de Superfície , Água
9.
Environ Sci Technol ; 44(17): 6532-49, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20687602

RESUMO

The ever-increasing use of engineered nanomaterials will lead to heightened levels of these materials in the environment. The present review aims to provide a comprehensive overview of current knowledge regarding nanoparticle transport and aggregation in aquatic environments. Nanoparticle aggregation and deposition behavior will dictate particle transport potential and thus the environmental fate and potential ecotoxicological impacts of these materials. In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined. Essential equations used to assess particle-particle and particle-surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described. Theoretical and experimental approaches for evaluating nanoparticle aggregation and deposition are presented, and the major findings of laboratory studies examining these processes are also summarized. Finally, we describe some of the challenges encountered when attempting to quantify the transport of nanoparticles in aquatic environments.


Assuntos
Fenômenos Químicos , Ecossistema , Engenharia , Nanoestruturas/química , Água/química , Coloides/química
10.
Environ Sci Technol ; 43(9): 3176-82, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19534131

RESUMO

Recent reports underline the potential environmental and public health risks linked to the "nano" revolution, yet little is known regarding the environmental fate and impacts of most nanomaterials following release in natural soils and groundwaters. Quantum dots (QDs) are one example of engineered nanomaterials that have been demonstrated to exhibit cytotoxic effects; hence the fate of this material in aqueous environments is of particular interest. In this study, a quartz crystal microbalance (QCM) was used to examine the interaction of a commercially available carboxyl terminated CdTe QD with a model sand (i.e., silica) surface. The deposition kinetics of the QD onto clean silica coated QCM crystals were measured over a wide range of solution conditions, in the presence of either monovalent (K+) or divalent cations (Ca2+). QD deposition rates onto silica were significantly greater in the presence of calcium versus potassium. Solution pH also influenced QD deposition behavior, with increased deposition observed ata lower pH value. The rate of QD release from the silica surface was also monitored using QCM measurements and found to be comparable to the rate of particle deposition when the monovalent salt was used. In contrast, the rate of QD release was considerably lower than the rate of deposition when particles were deposited in the presence of Ca2+. Physicochemical characterization of the QD suspended in varying electrolytes provided insights into the role of solution chemistry on particle size and electrophoretic mobility(surface charge). Measurements of QD size using dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to interpret the QD deposition behavior in different solution chemistries. Lower particle deposition rates observed at high ionic strengths were attributed to aggregation of the QDs resulting in decreased convective-diffusive transport to the silica surface.


Assuntos
Compostos de Cádmio/química , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Pontos Quânticos , Quartzo/química , Telúrio/química , Eletrólitos/química , Eletroforese , Cinética , Luz , Microscopia Eletrônica de Transmissão , Espalhamento de Radiação , Soluções/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...