Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 26(4): 2445-51, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20070108

RESUMO

The adsorption of NO(2) on the rutile TiO(2)(110) surface has been studied at room temperature in the pressure range from approximately 10(-8) torr to 200 mtorr using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Atomic nitrogen, chemisorbed NO(2), and NO(3) were formed, each of which saturates at pressures below approximately 10(-6) torr NO(2). Atomic nitrogen originates from decomposition of the NO(x) species. For pressures of up to 10(-3) torr, no significant change in the NO(x) surface species occurred, suggesting that environmentally relevant conditions with typical NO(2) partial pressures in the 1-100 ppb range can be modeled by ultrahigh vacuum (UHV) studies. The chemisorbed surface species can be removed by in situ annealing in UHV: all of the NO(x) species disappear around 400 K, whereas the N 1s signal associated with atomic nitrogen diminishes around 580 K. At higher pressures of NO(2) (p(NO(2)) > or = 10(-6) torr), physisorbed NO(2) and adsorbed water, which was likely due to displacement from the chamber walls, appeared. The water coverage grew significantly above approximately 10(-3) torr. Concurrently with co-condensation of water and NO(2), the population of NO(3) species grew strongly. From this, we conclude that the presence of NO(2) and water leads to the formation of multilayers of nitric acid. In contrast, pure water exposure after saturation of the surface with 200 mtorr NO(2) did not lead to a growth of the NO(3) signals, implying that HNO(3) formation requires weakly adsorbed NO(2) species. These findings have important implications for environmental processes, since they confirm that oxides may facilitate nitric acid formation under ambient humidity conditions encountered in the atmosphere.

2.
Chem Asian J ; 5(1): 78-86, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20014272

RESUMO

We demonstrate that intermolecular interactions, controlled by both oxygen and styrene coverage, alter reaction selectivity for styrene oxidation on oxygen-covered Au(111). Several partial oxidation products are formed--styrene oxide, acetophenone, benzoic acid, benzeneacetic acid, and phenylketene--in competition with combustion. The maximum ratio of the yields of styrene oxide to the total CO(2) produced is obtained for the maximum styrene coverage for the first two layers (0.28 ML) adsorbed on Au(111) precovered with 0.2 ML of O. Furthermore, our reactivity and infrared studies support a mechanism whereby styrene oxidation proceeds via two oxametallacycle intermediates which, under oxygen-lean conditions, lead to the formation of styrene oxide, acetophenone, and phenylketene. Benzoate, identified on the basis of infrared reflection absorption spectroscopy, is converted into benzoic acid during temperature-programmed reaction. These results demonstrate the ability to tune the epoxidation selectivity using reactant coverages and provide important mechanistic insight into styrene oxidation reactions.


Assuntos
Alcenos/química , Compostos de Epóxi/química , Ouro/química , Acetaldeído/análogos & derivados , Acetaldeído/química , Acetofenonas/química , Ácido Benzoico/química , Oxirredução , Oxigênio/química , Temperatura
3.
J Am Chem Soc ; 131(41): 15026-31, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19778050

RESUMO

Selective reductive coupling of benzaldehyde to stilbene is driven by subsurface Ti interstitials on vacuum-reduced TiO(2)(110). A combination of temperature-programmed reaction spectroscopy and scanning tunneling microscopy (STM) provides chemical and structural information which together reveal the dependence of this surface reaction on bulk titanium interstitials. Benzaldehyde reductively couples to stilbene with 100% selectivity and conversions of up to 28% of the adsorbed monolayer in temperature programmed reaction experiments. The activity for coupling was sustained for at least 20 reaction cycles, which indicates that there is a reservoir of Ti interstitials available for reaction and that surface O vacancies alone do not account for the coupling. Reactivity was unchanged after predosing with water so as to fill surface oxygen vacancies, which are not solely responsible for the coupling reaction. The reaction is nearly quenched if O(2) is adsorbed first-a procedure that both fills defects and reacts with Ti interstitials as they migrate to the surface. New titania islands form after reductive coupling of benzaldehyde, based on scanning tunneling microscope images obtained after exposure of TiO(2)(110) to benzaldehyde followed by annealing, providing direct evidence for migration of subsurface Ti interstitials to create reactive sites. The reliance of the benzaldehyde coupling on subsurface defects, and not surface vacancies, over reduced TiO(2)(110), may be general for other reductive processes induced by reducible oxides. The possible role of subsurface, reduced Ti interstitials has broad significance in modeling oxide-based catalysis with reduced crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...