Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 15298, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26477397

RESUMO

Laboratories that study Drosophila melanogaster or other insects commonly use carbon dioxide (CO2) anaesthesia for sorting or other work. Unfortunately, the use of CO2 has potential unwanted physiological effects, including altered respiratory and muscle physiology, which impact motor function behaviours. The effects of CO2 at different levels and exposure times were examined on the subsequent recovery of motor function as assessed by climbing and flight assays. With as little as a five minute exposure to 100% CO2, D. melanogaster exhibited climbing deficits up to 24 hours after exposure. Any exposure length over five minutes produced climbing deficits that lasted for days. Flight behaviour was also impaired following CO2 exposure. Overall, there was a positive correlation between CO2 exposure length and recovery time for both behaviours. Furthermore, exposure to as little as 65% CO2 affected the motor capability of D. melanogaster. These negative effects are due to both a CO2-specific mechanism and an anoxic effect. These results indicate a heretofore unconsidered impact of CO2 anaesthesia on subsequent behavioural tests revealing the importance of monitoring and accounting for CO2 exposure when performing physiological or behavioural studies in insects.


Assuntos
Anestesia , Dióxido de Carbono/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Hipóxia , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 104(32): 13198-203, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17666530

RESUMO

Recent studies have suggested that Paleozoic hyperoxia enabled animal gigantism, and the subsequent hypoxia drove a reduction in animal size. This evolutionary hypothesis depends on the argument that gas exchange in many invertebrates and skin-breathing vertebrates becomes compromised at large sizes because of distance effects on diffusion. In contrast to vertebrates, which use respiratory and circulatory systems in series, gas exchange in insects is almost exclusively determined by the tracheal system, providing a particularly suitable model to investigate possible limitations of oxygen delivery on size. In this study, we used synchrotron x-ray phase-contrast imaging to visualize the tracheal system and quantify its dimensions in four species of darkling beetles varying in mass by 3 orders of magnitude. We document that, in striking contrast to the pattern observed in vertebrates, larger insects devote a greater fraction of their body to the respiratory system, as tracheal volume scaled with mass1.29. The trend is greatest in the legs; the cross-sectional area of the trachea penetrating the leg orifice scaled with mass1.02, whereas the cross-sectional area of the leg orifice scaled with mass0.77. These trends suggest the space available for tracheae within the leg may ultimately limit the maximum size of extant beetles. Because the size of the tracheal system can be reduced when oxygen supply is increased, hyperoxia, as occurred during late Carboniferous and early Permian, may have facilitated the evolution of giant insects by allowing limbs to reach larger sizes before the tracheal system became limited by spatial constraints.


Assuntos
Tamanho Corporal , Besouros/anatomia & histologia , Oxigênio/farmacologia , Traqueia/anatomia & histologia , Animais , Gigantismo/etiologia , Gigantismo/veterinária
3.
Respir Physiol Neurobiol ; 154(1-2): 18-29, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16870512

RESUMO

Insect respiratory physiology has been studied for many years, and interest in this area of insect biology has become revitalized recently for a number of reasons. Technical advances have greatly improved the precision, accuracy and ease with which gas exchange can be measured in insects. This has made it possible to go beyond classic models such as lepidopteran pupae and examine a far greater diversity of species. One striking result of recent work is the realization that insect gas exchange patterns are much more diverse than formerly recognized. Current work has also benefited from the inclusion of comparative methods that rigorously incorporate phylogenetic, ecological and life history information. We discuss these advances in the context of the classic respiratory pattern of insects, discontinuous gas exchange. This mode of gas exchange was exhaustively described in moth pupae in the 1950s and 1960s. Early workers concluded that discontinuous gas exchange was an adaptation to reduce respiratory water loss. This idea is no longer universally accepted, and several competing hypotheses have been proposed. We discuss the genesis of these alternative hypotheses, and we identify some of the predictions that might be used to test them. We are pleased to report that what was once a mature discipline, in which the broad parameters and adaptive significance of discontinuous gas exchange were thought to be well understood, is now a thriving and vigorous field of research.


Assuntos
Insetos/fisiologia , Troca Gasosa Pulmonar/fisiologia , Animais , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA