Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(9): e77402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086774

RESUMO

Magnocellular neurons of the supraoptic nucleus receive glutamatergic excitatory inputs that regulate the firing activity and hormone release from these neurons. A strong, brief activation of these excitatory inputs induces a lingering barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) that lasts for tens of minutes. This is known to accompany an immediate increase in large amplitude mEPSCs. However, it remains unknown how long this amplitude increase can last and whether it is simply a byproduct of greater release probability. Using in vitro patch clamp recording on acute rat brain slices, we found that a brief, high frequency stimulation (HFS) of afferents induced a potentiation of mEPSC amplitude lasting up to 20 min. This amplitude potentiation did not correlate with changes in mEPSC frequency, suggesting that it does not reflect changes in presynaptic release probability. Nonetheless, neither postsynaptic calcium chelator nor the NMDA receptor antagonist blocked the potentiation. Together with the known calcium dependency of HFS-induced potentiation of mEPSCs, our results imply that mEPSC amplitude increase requires presynaptic calcium. Further analysis showed multimodal distribution of mEPSC amplitude, suggesting that large mEPSCs were due to multivesicular glutamate release, even at late post-HFS when the frequency is no longer elevated. In conclusion, high frequency activation of excitatory synapses induces lasting multivesicular release in the SON, which is independent of changes in release probability. This represents a novel form of synaptic plasticity that may contribute to prolonged excitatory tone necessary for generation of burst firing of magnocellular neurons.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Núcleo Supraóptico/citologia , Sinapses/fisiologia , Potenciais Sinápticos , Animais , Técnicas In Vitro , Cinética , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Probabilidade , Ratos , Ratos Sprague-Dawley , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/fisiologia , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Tetrodotoxina/toxicidade
2.
J Physiol ; 586(13): 3147-61, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18467369

RESUMO

The glutamatergic synapses of the supraoptic nucleus display a unique activity-dependent plasticity characterized by a barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) persisting for 5-20 min, causing postsynaptic excitation. We investigated how this short-term synaptic potentiation (STP) induced by a brief high-frequency stimulation (HFS) of afferents was initiated and maintained without lingering presynaptic firing, using in vitro patch-clamp recording on rat brain slices. We found that following the immediate rise in mEPSC frequency, STP decayed with two-exponential functions indicative of two discrete phases. STP depends entirely on extracellular Ca(2+) which enters the presynaptic terminals through voltage-gated Ca(2+) channels but also, to a much lesser degree, through a pathway independent of these channels or reverse mode of the plasma membrane Na(+)-Ca(2+) exchanger. Initiation of STP is largely mediated by any of the N-, P/Q- or L-type channels, and only a simultaneous application of specific blockers for all these channels attenuates STP. Furthermore, the second phase of STP is curtailed by the inhibition of mitochondrial Ca(2+) uptake or mitochondrial Na(+)-Ca(2+) exchanger. mEPSCs amplitude is also potentiated by HFS which requires extracellular Ca(2+). In conclusion, induction of mEPSC-STP is redundantly mediated by presynaptic N-, P/Q- and L-type Ca(2+) channels while the second phase depends on mitochondrial Ca(2+) sequestration and release. Since glutamate influences unique firing patterns that optimize hormone release by supraoptic magnocellular neurons, a prolonged barrage of spontaneous excitatory transmission may aid in the induction of respective firing activities.


Assuntos
Canais de Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Mitocôndrias/metabolismo , Núcleo Supraóptico/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Eletrofisiologia , Potenciais Evocados/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Neurosci ; 26(39): 10043-50, 2006 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17005867

RESUMO

Orexin neurons in the lateral hypothalamus (LH)/perifornical area (PFA) are known to promote food intake as well as provide excitatory influence on the dopaminergic reward pathway. Dopamine (DA), in turn, inhibits the reward pathway and food intake through its action in the LH/PFA. However, the cellular mechanism by which DA modulates orexin neurons remains largely unknown. Therefore, we examined the effect of DA on the excitatory neurotransmission to orexin neurons. Whole-cell patch-clamp recordings were performed using acute rat hypothalamic slices, and orexin neurons were identified by their electrophysiological and immunohistochemical characteristics. Pharmacologically isolated action potential-independent miniature EPSCs (mEPSCs) were monitored. Bath application of DA induced a bidirectional effect on the excitatory synaptic transmission dose dependently. A low dose of DA (1 microM) increased mEPSC frequency, which was blocked by the D1-like receptor antagonist SCH 23390, and mimicked by the D1-like receptor agonist SKF 81297. In contrast, higher doses of DA (10-100 microM) decreased mEPSC frequency, which could be blocked with the D2-like receptor antagonist, sulpiride. Quinpirole, the D2-like receptor agonist, also reduced mEPSC frequency. None of these compounds affected the mEPSCs amplitude, suggesting the locus of action was presynaptic. Furthermore, DA (1 microM) induced an increase in the action potential firing, whereas DA (100 microM) hyperpolarized and ceased the firing of orexin neurons, indicating the effect of DA on excitatory synaptic transmission may influence the activity of the postsynaptic cell. In conclusion, our results suggest that D1- and D2-like receptors have opposing effects on the excitatory presynaptic terminals impinging onto orexin neurons.


Assuntos
Dopamina/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Comportamento Alimentar/fisiologia , Região Hipotalâmica Lateral/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Hiperfagia/fisiopatologia , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/análise , Núcleo Accumbens/efeitos dos fármacos , Obesidade/fisiopatologia , Orexinas , Técnicas de Patch-Clamp , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Recompensa , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA