Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CrystEngComm ; 15(43)2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24353476

RESUMO

A series of vanadium(V) complexes with o-dioxolene (catecholato) ligands and an ancillary ligand, (N-(salicylideneaminato)ethylenediamine) (hensal), were investigated using 51V solid-state magic angle spinning NMR spectroscopy (51V MAS NMR) to assess the local environment of the vanadium(V). The solid-state 51V NMR parameters of vanadium(V) complexes with a related potentially tetradentate ancillary ligand (N-salicylidene-N'-(2-hydroxyethyl)ethylenediamine) (h2shed) were previously shown to be associated with the size of the HOMO-LUMO gap in the complex, and as such provide insights on the interaction between metal ion and ligand (P. B. Chatterjee, et al., Inorg. Chem 50 (2011) 9794). Our results show that the modification of the ancillary ligand does not impact the observed trend between complexes ranging from catechols with electron rich to electron poor substituents. However, the ancillary ligand does impact the size of the HOMO-LUMO separation in the parent complex and thus the solid-state vanadium NMR chemical shift of the unsubstituted vanadium complex. For these complexes significant changes observed in the isotropic shifts and more modest changes detected in the CQ reflect the electronic changes in the complex as the catechol is varied. However, no obvious trend was observed in the chemical shift anisotropies (δσ and ησ) with the variation in the catechol. The electronic changes in the coordination environment of the vanadium can be described using solid-state 51V NMR spectroscopy.

2.
Inorg Chem ; 50(20): 9794-803, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21842875

RESUMO

(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes.


Assuntos
Compostos Organometálicos/química , Vanádio/química , Catecóis/química , Elétrons , Ligantes , Espectroscopia de Ressonância Magnética , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...