Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 230: 109437, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924981

RESUMO

Myopia, or nearsightedness, is the most common type of refractive error and is characterized by a mismatch between the optical power and ocular axial length. Light, and more specifically the spectral composition of light, has been known to influence myopic axial growth. In this pilot study, we exposed zebrafish to illuminations that vary in spectral composition and screened for changes in axial length. The illumination spectra included narrow band ultra-violet A (UVA) (peak wavelength 369 nm), violet (425 nm), cyan (483 nm), green/yellow (557 nm), and red (633 nm) light, as well as broad band white light (2700 K and 6500 K), dim white light and broad spectrum (day) light. We found that rearing zebrafish in cyan or red light leads to a reduction of the ocular axial length. The results of this pilot study may contribute to new perspectives on the role of light and lighting as an intervention strategy for myopia control.


Assuntos
Miopia , Erros de Refração , Animais , Peixe-Zebra , Projetos Piloto , Olho , Miopia/prevenção & controle , Refração Ocular , Comprimento Axial do Olho
2.
Sci Rep ; 13(1): 2017, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737489

RESUMO

Genome-wide association studies (GWAS) have dissected numerous genetic factors underlying refractive errors (RE) such as myopia. Despite significant insights into understanding the genetic architecture of RE, few studies have validated and explored the functional role of candidate genes within these loci. To functionally follow-up on GWAS and characterize the potential role of candidate genes on the development of RE, we prioritized nine genes (TJP2, PDE11A, SHISA6, LAMA2, LRRC4C, KCNQ5, GNB3, RBFOX1, and GRIA4) based on biological and statistical evidence; and used CRISPR/cas9 to generate knock-out zebrafish mutants. These mutant fish were screened for abnormalities in axial length by spectral-domain optical coherence tomography and refractive status by eccentric photorefraction at the juvenile (2 months) and adult (4 months) developmental stage. We found a significantly increased axial length and myopic shift in refractive status in three of our studied mutants, indicating a potential involvement of the human orthologs (LAMA2, LRRC4C, and KCNQ5) in myopia development. Further, in-situ hybridization studies showed that all three genes are expressed throughout the zebrafish retina. Our zebrafish models provide evidence of a functional role of these three genes in refractive error development and offer opportunities to elucidate pathways driving the retina-to-sclera signaling cascade that leads to myopia.


Assuntos
Miopia , Erros de Refração , Animais , Humanos , Estudo de Associação Genômica Ampla , Miopia/genética , Erros de Refração/genética , Retina , Peixe-Zebra/genética
3.
Invest Ophthalmol Vis Sci ; 63(3): 5, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262731

RESUMO

Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.


Assuntos
Conexinas , Miopia , Erros de Refração , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Miopia/genética , Miopia/metabolismo , Erros de Refração/genética , Erros de Refração/metabolismo , Retina/metabolismo , Proteína delta-2 de Junções Comunicantes
4.
Transl Vis Sci Technol ; 11(3): 17, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35285860

RESUMO

Purpose: To establish a set of assays that allow the in vivo screening of candidate genes for ocular diseases in zebrafish, with an emphasis on refractive error. Methods: Our pipeline includes the most relevant ocular screening measurements to assess (1) ocular biometry using spectral domain optical coherence tomography, (2) refractive status using an eccentric photorefractor, (3) intraocular pressure by tonometry, and (4) optokinetic response to study visual capability in zebrafish. To validate our pipeline and to demonstrate the potential of zebrafish as a valid animal model, we chose two well-characterized genes with an ocular phenotype (PRSS56 and FBN1) and generated two mutant zebrafish lines (prss56 and fbn1). Mutant fish were assessed at 2, 4, and 6 months after fertilization. Results: With the proposed phenotyping pipeline, we showed that ocular biometry, refractive status, intraocular pressure, and visual function can be studied in zebrafish. In the prss56 mutant, the pipeline revealed a dramatic decrease in axial length, mainly owing to a decreased vitreous chamber depth, whereas in the fbn1 mutant, ectopia lentis was the most distinctive ocular phenotype observed. Tonometry in both mutant lines showed an increase in intraocular pressure. Conclusions: The proposed pipeline was applied successfully in zebrafish and can be used for future genetic screenings of candidate genes. While validating our pipeline, we found a close resemblance between the ocular manifestations in the zebrafish mutants and patients harboring mutations in PRSS56 and FBN1. Our results support the validity of our pipeline and highlight the potential of zebrafish as an animal model for in vivo screening of candidate genes for ocular diseases.


Assuntos
Ectopia do Cristalino , Peixe-Zebra , Animais , Modelos Animais de Doenças , Ectopia do Cristalino/genética , Olho , Fibrilina-1/genética , Humanos , Fenótipo , Serina Proteases/genética , Peixe-Zebra/genética
5.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693978

RESUMO

The hexanucleotide (G4C2)-repeat expansion in the C9ORF72 gene is the most common pathogenic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This repeat expansion can be translated into dipeptide repeat proteins (DPRs), and distribution of the poly-GR DPR correlates with neurodegeneration in postmortem C9FTD/ALS brains. Here, we assessed poly-GR toxicity in zebrafish embryos, using an annexin A5-based fluorescent transgenic line (secA5) that allows for detection and quantification of apoptosis in vivo. Microinjection of RNA encoding poly-GR into fertilized oocytes evoked apoptosis in the brain and abnormal motor neuron morphology in the trunk of 1-4-days postfertilization embryos. Poly-GR can be specifically detected in protein homogenates from injected zebrafish and in the frontal cortexes of C9FTD/ALS cases. Poly-GR expression further elevated MitoSOX levels in zebrafish embryos, indicating oxidative stress. Inhibition of reactive oxygen species using Trolox showed full suppression of poly-GR toxicity. Our study indicates that poly-GR can exert its toxicity via oxidative stress. This zebrafish model can be used to find suppressors of poly-GR toxicity and identify its molecular targets underlying neurodegeneration observed in C9FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo
6.
Commun Biol ; 4(1): 676, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083742

RESUMO

Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error.


Assuntos
Conexinas/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Mutação , Erros de Refração/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Catarata/genética , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Miopia/genética , RNA-Seq/métodos , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise de Célula Única/métodos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
J Virol Methods ; 199: 116-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487100

RESUMO

An automated blotter was evaluated for detection of the HPV SPF10-LiPA25 RHA for HPV genotyping with 63 FFPE tissue and 45 WHO proficiency panel samples. The results showed that 10-20% more types were detected and bands were of significantly stronger intensity (p<0.0001) compared to manual processing. Therefore it was concluded that automated detection of HPV genotypes using the HPV SPF10-LiPA25 is more sensitive for low copy number and mixed-type HPV samples.


Assuntos
Automação Laboratorial/métodos , Técnicas de Genotipagem/métodos , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Virologia/métodos , Feminino , Humanos , Masculino , Papillomaviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...