Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227775

RESUMO

CD14 is an innate immune receptor that senses pathogen-associated molecular patterns, such as lipopolysaccharide, to activate the innate immune response. Although CD14 is known to be glycosylated, detailed understanding about the structural and functional significance of this modification is still missing. Herein, an NMR and MS-based study, assisted by MD simulations, has provided a 3D-structural model of glycosylated CD14. Our results reveal the existence of a key N-glycosylation site at Asn282 that exclusively contains unprocessed oligomannnose N-glycans that perfectly fit the concave cavity of the bent-solenoid shaped protein. This site is not accessible to glycosidases and is fundamental for protein folding and secretion. A second N-site at Asn151 displays mostly complex N-glycans, with the typical terminal epitopes of the host cell-line expression system (i.e. ßGal, α2,3 and α2,6 sialylated ßGal, here), but also particularities, such as the lack of core fucosylation. The glycan at this site points outside the protein surface, resulting in N-glycoforms fully exposed and available for interactions with lectins. In fact, NMR experiments show that galectin-4, proposed as a binder of CD14 on monocytes to induce their differentiation into macrophages-like cells, interacts in vitro with CD14 through the recognition of the terminal glycoepitopes on Asn151. This work provides key information about CD14 glycosylation, which helps to better understand its functional roles and significance. Although protein glycosylation is known to be dynamic and influenced by many factors, some of the features found herein (presence of unprocessed N-glycans and lack of core Fuc) are likely to be protein specific.


Assuntos
Lectinas , Polissacarídeos , Glicosilação , Polissacarídeos/química , Lectinas/metabolismo , Linhagem Celular , Lipopolissacarídeos/metabolismo
2.
Nat Commun ; 14(1): 3496, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311743

RESUMO

Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.


Assuntos
Integrinas , Linfócitos T , Humanos , Cristalização , Epitopos , Glicosilação
3.
JACS Au ; 3(1): 204-215, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711084

RESUMO

Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.

4.
Angew Chem Int Ed Engl ; 59(52): 23763-23771, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32915505

RESUMO

The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13 C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15 N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Lectinas Tipo C/química , Modelos Moleculares , Polissacarídeos/química , Receptores de Coronavírus/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo , Ligação Proteica , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...