Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932447

RESUMO

Soybean cyst nematode is a major pest of soybean crops, causing significant yield losses and economic impact. Current management strategies primarily rely on resistant varieties, cover crops, and seed treatments. However, there is a growing interest in developing sustainable, ecologically based approaches to integrate SCN risk reduction into soybean production systems. This study aimed to evaluate the efficacy of various compost and manure amendments in suppressing SCN populations and promoting soybean productivity. An in vitro egg hatching assay was conducted to screen the inhibitory effects of different compost and manure extracts on SCN egg hatching. Results indicated that poultry manure, Layer Ash Blend®, and swine manure extracts significantly inhibited SCN hatching compared to other treatments across multiple time points. Greenhouse trials further validated the effectiveness of Layer Manure®, poultry manure, High Carbon Dairy Doo®, and Seed Starter 101® in suppressing SCN cysts, eggs, and juveniles. A field microplot trial confirmed the practical promise of Layer Ash Blend® and poultry manure in SCN management, with significant reductions in SCN populations and increased soybean yields. The study also investigated the impact of these amendments on promoting the population of bacterivorous and frugivorous nematodes, contributing to a biological diverse soil ecosystem. Overall, the results indicate that amending SCN-infested soil with specific compost or manure formulations can effectively suppress nematode populations while improving soybean productivity. These findings contribute to the development of sustainable strategies for SCN management in soybean production systems.

2.
J Nematol ; 55(1): 20230015, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37469487

RESUMO

Plant-parasitic nematodes (PPNs) can cause substantial economic yield losses to many agronomic crops in the United States. A regional-scale survey was completed across 20 counties to determine PPNs prevalence in Michigan corn and how factors such as soil type, tillage, irrigation, and cropping systems influence their distribution. Ten different major genera of PPNs were identified in Michigan corn fields: Longidorus (needle), Helicotylenchus (spiral), Pratylenchus (lesion), Meloidogyne (root-knot), Heterodera (cyst), Hoplolaimus (lance), Tylenchorhynchus or Merlinius (stunt), Paratylenchus (pin), Criconemella (ring), and Xiphinema (dagger). No significant differences among different categories of tillage for lesion, stunt, or needle nematode prevalence was detected. Lesion nematodes were most prevalent in muck soil, while stunt nematode prevalence was significantly affected by the soil type. Needle nematodes were least abundant in irrigated soils and in contrast, stunt nematodes were higher in non-irrigated soils. Spiral nematodes were the most common PPNs in Michigan corn in all cropping systems. These findings will be helpful in planning future nematode studies in Michigan and in developing and evaluating corn nematode management strategies.

3.
J Nematol ; 55(1): 20230007, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37082221

RESUMO

Worldwide, the ornamental plant industry is estimated to be valued at $70 billion, with the United States' ornamental plant industry valued at $4.8 billion in 2020. Ornamental plants are cultivated for numerous reasons worldwide, such as decorative, medicinal, social, and utility purposes, making the ornamental field a high growth industry. One of the main pathogen groups affecting the yield and growth of the ornamental plant industry is plant-parasitic nematodes, which are microscopic roundworms that feed on plant parts causing significant yield loss. There are many kinds of plant-parasitic nematodes that affect ornamental plants, with the main genera being Meloidogyne spp., Aphelenchoides spp., Paratylenchus spp., Pratylenchus spp., Helicotylenchus spp., Radopholus spp., Xiphinema spp., Trichodorus spp., Paratrichodorus spp., Rotylenchulus spp., and Longidorus spp. The aim of this review is to focus on the effects, hosts, and symptoms of these major plant-parasitic nematodes on ornamental plants and synthesize current management strategies in the ornamental plant industry.

4.
Plant Dis ; 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33325745

RESUMO

Cyst nematodes are ranked as the second most damaging plant-parasitic nematode genus of crops worldwide (Jones et al. 2013). The hop cyst nematode, Heterodera humuli, has been reported to cause up to 38% reduction in dry hops per bine (Hay and Pethybridge 2003). America is the top hop producing country worldwide, with 75% of production occurring in Washington state, with the majority of this production occurring in the Yakima Valley region (USDA, 2019). In late 2019, 30 soil samples from 15 different fields were collected from the hop cvs. HBC 394, HBC 369, and YCR 14. Nematodes were extracted using an adapted centrifugal floatation method (Jenkins 1964) from 100 cc subsamples of soil. Twenty of these samples contained at least one cyst and 23 contained at least one juvenile. Body length of juveniles (n = 5) averaged + standard deviation 377.62 ± 4.76 µm which is consistent with H. humuli juvenile body measurements (Sen 1968). Three samples from Yakima County and two from Benton County were identified to the species level using sequences from the internal transcribed spacer (ITS) region of the 5.8S gene. The sequences (GenBank accession numbers MT840678 to MT840682) were amplified using forward primer 5.8S-F (5'-GTGATTCCATTCACCAHCTACCTG-3'), and reverse primer 5.8S-R (5'-TTCGCACTAATTATCGCAGTTGG-3'). Sequence comparison with available ITS (5.8S) sequences in GenBank using BLAST showed 99.85% identity to H. humuli for all five samples. Because COI sequences of H. humuli are not available, to provide an additional marker for species identification, we amplified the COI sequences by using (forward primer Hete-COI-F (5'-TTTGGDCAYCCHGARGTTTATGTT-3'), and reverse primer Hete-COI-R (5'-AYWGTAAAAAGGRRAATAAAACC-3') for these samples. Four COI sequences (GenBank accession numbers MT840683 to MT840686) were obtained. These COI sequences will be used to identify future H. humuli samples. To confirm pathogenicity, eight 1-gal pots were filled with a 90:10 play sand to potting soil mixture and one hop rhizome cv. 'Centennial' was planted in pots and maintained in a greenhouse. After above ground plant growth was observed, half the pots were inoculated with hand-picked H. humuli cysts from Yakima soil samples at a density of 10 cysts/100 cc of soil. The life cycle of H. humuli in potted experiments is 40 days (McNamara and Mende 1995). Forty-five days after inoculation, plant measurements were recorded and nematodes extracted from five 100 cc soil samples per pot as described above. Soil samples revealed that H. humuli populations had an average Reproductive Factor (RF = final nematode population/initial nematode population) of 2.08. Five cysts were crushed to determine eggs/cyst, which yielded an average of 101 eggs/cyst. Young infected hops lacked vigor, with all replicates stunted both in bine height and leaf length compared to healthy controls. Bine heights were reduced by an average of 40.4% in pots inoculated with H. humuli compared to control plants (P = 0.0016). Distribution of hop cyst within the United States is limited to the top four states for hop production: Washington, Oregon, Idaho and Michigan (Cobb 1962; Sen and Jensen 1967; Hafez et al. 2010, Warner and Bird, 2015). In 1962, Cobb reported H. humuli in Pierce County, Washington, but it had not been reported in Benton County and Yakima County until now. This is a significant finding that has the potential to impact the Washington state hop industry, valued at $475.7 million in 2019 (USDA, 2019). Due to the lack of known effective nematode control measures, the discovery of H. humuli in the major hop-growing region of Washington warrants concern.

5.
Phytopathology ; 110(6): 1226-1234, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32106768

RESUMO

The interaction of the root lesion nematode Pratylenchus penetrans and the fungal plant pathogen Verticillium dahliae causes potato early die (PED) complex, which induces premature vine senescence and dramatically reduces yield in potatoes. Management of PED is often achieved through the use of soil fumigants and nematicides, but their adverse effects on soil, human and environmental health, and strict regulations worldwide require alternative control tactics. In this study, we investigated the effects of multiple composts and manures on nematode mortality and PED. In lab assays, root lesion nematodes were exposed to poultry manure, layer ash blend, Dairy Doo, or wood ash for 7 days at rates of 0, 0.1, 1, 10, and 20% by volume of product and assessed for nematode survivorship. Additionally, these products were evaluated for volatile fatty acid content to determine if fatty acid content affects nematode control. In a field trial, the composts and manures were evaluated at two different rates, high (11.2 t/ha) or low (2.8 t/ha), and populations of P. penetrans and V. dahliae were quantified. Our results show that a 1% application rate of poultry manure and layer ash blend provided the greatest nematode control in lab assays with 24.5 and 38.2% reduction, respectively, with greater control at higher rates. In the field, plots treated with poultry manure had significantly higher potato yields and significantly fewer nematodes than control plots. Taken together, our results suggest that poultry manure could be a promising amendment to control PED.


Assuntos
Compostagem , Solanum tuberosum , Verticillium , Animais , Esterco , Michigan , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...