Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547167

RESUMO

Ultrasonic power and data transfer through multilayered curved walls was investigated using numerical and experimental analysis. The acoustic channel used in this paper was formed by two concentric pipes filled with water, aiming for applications that involve powering and monitoring sensors installed behind the pipe walls. The analysis was carried out in the frequency and time domains using numerical and experimental models. Power and data were effectively simultaneously transferred through the channel. A remote temperature and pressure sensor was powered and interrogated throughout all the layers, and the power insertion loss was 10.72 dB with a data transmission rate of 1200 bps using an amplitude modulated scheme with Manchester coding. The efficiency of the channel was evaluated through an experimental analysis of the bit error rate (BER) with different values of signal-to-noise ratio (SNR), showing a decrease in the number of errors compared with detection without Manchester coding.

2.
Sensors (Basel) ; 17(7)2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714892

RESUMO

A passive surface acoustic wave (SAW) pressure sensor was developed for real-time pressure monitoring in downhole application. The passive pressure sensor consists of a SAW resonator, which is attached to a circular metal diaphragm used as a pressure transducer. While the membrane deflects as a function of pressure applied, the frequency response changes due to the variation of the SAW propagation parameters. The sensitivity and linearity of the SAW pressure sensor were measured to be 8.3 kHz/bar and 0.999, respectively. The experimental results were validated with a hybrid analytical-numerical analysis. The good results combined with the robust design and packaging for harsh environment demonstrated it to be a promising sensor for industrial applications.

3.
Sensors (Basel) ; 11(12): 11103-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22247655

RESUMO

A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.


Assuntos
Ligas/química , Magnetismo , Fótons , Cristalização
4.
Sensors (Basel) ; 10(11): 9698-711, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163435

RESUMO

The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Fótons , Cristalização , Modelos Teóricos , Pressão
5.
Sensors (Basel) ; 10(9): 8119-28, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163644

RESUMO

This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 µm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor.


Assuntos
Resinas Epóxi/química , Tecnologia de Fibra Óptica/instrumentação , Imãs/química , Fibras Ópticas , Campos Magnéticos , Tamanho da Partícula , Poliuretanos/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...