Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(12): 3375-3385, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35432865

RESUMO

Mixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids. A hemispherical base tube creates a Coriolis force as a 'spinning top' (ST) topological fluid flow in the less dense liquid which penetrates the denser layer of liquid, delivering liquid from the upper layer through the lower layer to the surface of the tube with the thickness of the layers determined using neutron imaging. Similarly, double helical (DH) topological flow in the less dense liquid, arising from Faraday wave eddy currents twisted by Coriolis forces, impact through the less dense liquid onto the surface of the tube. The lateral dimensions of these topological flows have been determined using 'molecular drilling' impacting on a thin layer of polysulfone on the surface of the tube and self-assembly of nanoparticles at the interface of the two liquids. At high rotation speeds, DH flow also occurs in the denser layer, with a critical rotational speed reached resulting in rapid phase demixing of preformed emulsions of two immiscible liquids. ST flow is perturbed relative to double helical flow by changing the shape of the base of the tube while maintaining high mass transfer between phases as demonstrated by circumventing the need for phase transfer catalysts. The findings presented here have implications for overcoming mass transfer limitations at interfaces of liquids, and provide new methods for extractions and separation science, and avoiding the formation of emulsions.

2.
J Phys Chem B ; 125(17): 4383-4392, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590760

RESUMO

The selectivity rules of sum frequency generation spectroscopy were exploited to determine propyl chain order during the time-dependent oscillatory adsorption of propyltrimethoxysilane (PTMS) and Langmuir-type growth of propyldimethylmethoxysilane (PDMMS). During the early stages of film growth, molecular packing density determines the extent of propyl chain defects within both films with high surface coverage resulting in a film with fewer defects. Following this, an ordered monolayer-like film stabilizes on the Al2O3 substrate for both silanes. Although this result is intuitive for the Langmuir-type growth of PDMMS, the stabilization of molecular ordering despite the continuing oscillation in PTMS surface coverage indicates the presence of a stable monolayer, while it is the oligomerized PTMS dendrimers which continue to desorb and readsorb to the substrate. We also reveal for the first time, the formation of a physisorbed bilayer during the self-assembly process of PTMS. The presence of this ordered, physisorbed bilayer on top of the covalently bound PTMS film plays a key role in the process of the molecular self-assembly mechanism and is proposed to enable further condensation of the covalently bound film.

3.
Nanoscale Adv ; 3(11): 3064-3075, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133664

RESUMO

Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed, ω, tilt angle, θ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. These topologies have been established through materials processing, as spinning top flow normal to the surface of the tube, double-helical flow across the thin film, and spicular flow, a transitional region where both effects contribute. The manifestation of mass transport patterns within the film have been observed by monitoring the mixing time, temperature profile, and film thickness against increasing rotational speed, ω. In addition, these flow patterns have unique signatures that enable the morphology of nanomaterials processed in the VFD to be predicted, for example in reversible scrolling and crumbling graphene oxide sheets. Shear-stress induced recrystallisation, crystallisation and polymerisation, at different rotational speeds, provide moulds of high-shear topologies, as 'positive' and 'negative' spicular flow behaviour. 'Molecular drilling' of holes in a thin film of polysulfone demonstrate spatial arrangement of double-helices. The grand sum of the different behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an optimal tilt angle of 45°, and provides a new concept in the fabrication of novel nanomaterials and controlling the organisation of matter.

4.
Polymers (Basel) ; 11(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30960291

RESUMO

The growth of silane films on plasma oxidized highly oriented pyrolytic graphite (HOPG) surfaces has been studied using wet chemical deposition of propyltrimethoxysilane (PTMS) and propyldimethylmethoxysilane (PDMMS). Scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS) were used to investigate the chemical composition and morphology of the silane films. The effects of several deposition parameters were examined, including the necessity of oxidation of the HOPG surface, addition of water with the silane, and rinsing before curing. The optimal conditions needed to create a complete uniform film differ for the two silanes due to differences in their structures. Both silanes require an oxidized HOPG surface for a film to grow, the addition of water with PTMS results in a thicker film, while the addition of water with PDMMS decreases the film growth. Rinsing of both samples before curing removes physisorbed species, leaving only the covalently bonded film on the surface.

5.
Polymers (Basel) ; 11(3)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30960394

RESUMO

The effect of physisorbed and chemisorbed species on the time-dependent self-assembly mechanism of organosilane films has been investigated on aluminium oxide using X-ray Photoelectron Spectroscopy. The role of physisorbed species was determined through their removal using a simple rinsing procedure while monitoring film substrate coverage. Removing physisorbed species from Propyldimethylmethoxysilane films, shown to follow a Langmuir-type adsorption profile, reduces the substrate coverage initially but quickly results in coverages equivalent to films that did not undergo a rinsing procedure. This indicates that all Propyldimethylmethoxysilane molecules are covalently bound to the substrate following 15 s of film growth. Removing physisorbed species from films, which have been shown to follow an oscillatory adsorption profile, Propyltrimethoxysilane and Propylmethyldimethoxysilane, reveal the persistence of these oscillations despite a reduction in silane substrate coverage. These results not only confirm the presence of two thermodynamically favourable phases in the condensation equilibrium reaction as physisorbed and chemisorbed species, but also indicate that the desorption of species during film growth involves both states of chemical binding.

6.
Nanomaterials (Basel) ; 8(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304791

RESUMO

In this work PeakForce tapping (PFT) imaging was demonstrated with carbon nanotube atomic force microscopy (CNT-AFM) probes; this imaging mode shows great promise for providing simple, stable imaging with CNT-AFM probes, which can be difficult to apply. The PFT mode is used with CNT-AFM probes to demonstrate high resolution imaging on samples with features in the nanometre range, including a Nioprobe calibration sample and gold nanoparticles on silicon, in order to demonstrate the modes imaging effectiveness, and to also aid in determining the diameter of very thin CNT-AFM probes. In addition to stable operation, the PFT mode is shown to eliminate "ringing" artefacts that often affect CNT-AFM probes in tapping mode near steep vertical step edges. This will allow for the characterization of high aspect ratio structures using CNT-AFM probes, an exercise which has previously been challenging with the standard tapping mode.

7.
Nanomaterials (Basel) ; 7(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068385

RESUMO

High aspect ratio carbon nanotubes are ideal candidates to improve the resolution and lifetime of atomic force microscopy (AFM) probes. Here, we present simple methods for the preparation of carbon nanotube modified AFM probes utilising solvent evaporation or dielectrophoresis. Scanning electron microscopy (SEM) of the modified probes shows that the carbon nanotubes attach to the probe apex as fibres and display a high aspect ratio. Many of the probes made in this manner were initially found to exhibit anomalous feedback characteristics during scanning, which rendered them unsuitable for imaging. However, we further developed and demonstrated a simple method to stabilise the carbon nanotube fibres by scanning with high force in tapping mode, which either shortens or straightens the carbon fibre, resulting in stable and high quality imaging AFM imaging.

8.
Chemistry ; 23(64): 16219-16230, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28763123

RESUMO

Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.


Assuntos
Mercúrio/química , Óleos de Plantas/química , Enxofre/química , Adsorção , Poluentes Atmosféricos/química , Varredura Diferencial de Calorimetria , Polímeros/síntese química , Polímeros/química , Reciclagem , Poluentes do Solo/química , Propriedades de Superfície , Termogravimetria , Poluentes Químicos da Água/química
9.
Chem Asian J ; 12(13): 1625-1634, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28407412

RESUMO

The chemical affinity of single-stranded DNA (ssDNA) to adsorb to the surface of single-walled carbon nanotubes (SWCNTs) is used for SWCNT purification, separation and in bio-devices. Despite the popularity of research on SWCNT-ssDNA conjugates, very little work has studied the removal of adsorbed ssDNA on SWCNTs. This paper reports a comprehensive study of biological, physical and chemical treatments for the removal of ssDNA from SWCNT-ssDNA suspensions. These include enzymatic cleavage, heat treatment under vacuum up to 400 °C, chemical treatments with high or low pH, oxidizing conditions, and high-ionic-strength solvents. Complimentary characterization techniques including fluorescence from a DNA-intercalating dye (YO-PRO-1) and photoelectron spectroscopy are used to exhaustively study and compare the methods investigated. Enzyme treatment is found to remove the phosphate backbone only, leaving nucleosides adsorbed to SWCNTs. Heating in inert atmosphere is ineffective at removing ssDNA. Acid, base and oxidative treatment are found to be effective for the removal of ssDNA from SWCNTs. Where possible the mechanism of desorption is described and from the findings suggestions for "best practices" are provided.


Assuntos
DNA de Cadeia Simples/química , Nanotubos de Carbono/química , Adsorção , Tamanho da Partícula , Propriedades de Superfície
10.
Chem Commun (Camb) ; 52(71): 10755-8, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27506139

RESUMO

A vortex fluid device (VFD) with non-thermal plasma liquid processing within dynamic thin films has been developed. This plasma-liquid microfluidic platform facilitates chemical processing which is demonstrated through the manipulation of the morphology and chemical character of colloidal graphene oxide in water.


Assuntos
Grafite/química , Gases em Plasma/química , Coloides/química , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química , Espectroscopia Fotoeletrônica , Análise Espectral Raman , Água/química
11.
J Biotechnol ; 219: 90-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26721183

RESUMO

Antifouling strategies to limit biofilms on submerged surfaces in the marine environment are of particular interest due to the economic and environmental impacts in industries such as shipping and aquaculture. Here, we investigate the influence of chemically modified hessian bag surfaces on the bacterial abundance and community composition of biofilm formation using flow cytometry and 16S rRNA pyrosequencing. Hessian bags were coated with 5% and 10% Propyl(trimethoxy)silane (PTMS) and half of the bags had their lignin and hemicellulose removed via NaOH mercerisation. Significantly lower bacterial abundance was observed on mercerised bags treated with 5% PTMS (p<0.01). Significant shifts in bacterial taxa were also observed (p=0.0004), whereby unmercerised bags exhibited higher relative abundances of the anaerobic family Desulfovibrionaceae (4.5±1.7%), while mercerised bags displayed higher relative abundances of the aerobic family Phyllobacteriaceae (3.6±1.7%). This suggests that the mercerisation process may lower colonization rates and subsequently produce a thinner biofilm. This hypothesis is strengthened by the lower abundance of bacteria on mercerised bags, particularly on the 5% PTMS coating. Our results show that modifying a hessian surface via non-toxic coating and mercerisation reduces biofilm formation and also shifts the dominant taxa, increasing our understanding of antifouling strategies in the marine environment.


Assuntos
Biofilmes/efeitos dos fármacos , Phyllobacteriaceae/fisiologia , Silanos/farmacologia , Hidróxido de Sódio/química , Incrustação Biológica/prevenção & controle , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/análise , Análise de Sequência de RNA , Silanos/química , Propriedades de Superfície , Microbiologia da Água
12.
Sci Technol Adv Mater ; 16(2): 025002, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877771

RESUMO

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

13.
Nanotechnology ; 25(33): 335705, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25074581

RESUMO

As a recent technological development, high-speed atomic force microscopy (AFM) has provided unprecedented insights into dynamic processes on the nanoscale, and is capable of measuring material property variation over short timescales. Miniaturized cantilevers developed specifically for high-speed AFM differ greatly from standard cantilevers both in size and dynamic properties, and calibration of the cantilever spring constant is critical for accurate, quantitative measurement. This work investigates specifically, the calibration of these new-generation cantilevers for the first time. Existing techniques are tested and the challenges encountered are reported and the most effective approaches for calibrating fast-scanning cantilevers with high accuracy are identified, providing a resource for microscopists in this rapidly developing field. Not only do these cantilevers offer faster acquisition of images and force data but due to their high resonant frequencies (up to 2 MHz) they are also excellent mass sensors. Accurate measurement of deposited mass requires accurate calibration of the cantilever spring constant, therefore the results of this work will also be useful for mass-sensing applications.

14.
Nanotechnology ; 24(23): 235705, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23669234

RESUMO

Carbon nanotubes are considered to be an ideal imaging tip for atomic force microscopy (AFM) applications, and a number of methods for fabricating these types of probe have been developed in recent years. This work reports the attachment of carbon nanotubes to AFM probes using a micromanipulator within a scanning electron microscope. Electron beam induced deposition and etching are used to enhance the quality and attachment of the carbon nanotube tip and improve the fabrication rate of the CNT AFM probes compared to existing techniques. The attachment process is also improved by using a mat of SWCNTs (buckypaper) as a CNT source, which simultaneously improves the ease of fabrication and rate of nanotube probe production. The aim of these improvements is to simplify and improve the attachment process such that these probes can be better and more widely used in applications that benefit from their unique properties. This improved process is then used to attach CNTs to the new generation of low-mass, high-frequency probes, which are designed for rapid AFM imaging. The ability of these probes to operate with CNT tips is demonstrated, and their wear-resistance properties were found to be significantly enhanced compared to unmodified probes. These wear-resistant probes imaging at high scan rates are proposed to be effective tools for increasing throughput in metrological analysis, particularly for imaging high-modulus surfaces with high roughness and high-aspect-ratio features.

15.
Ultramicroscopy ; 131: 46-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685172

RESUMO

Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to calibrate the cantilever spring constant using the thermal noise method, allowing complete force calibration to be accurately performed without tip-sample contact.

16.
ChemSusChem ; 6(2): 320-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23322677

RESUMO

Carbon nanotube-silicon solar cells are a recently investigated photovoltaic architecture with demonstrated high efficiencies. Silicon solar-cell devices fabricated with a thin film of conductive polymer (polyaniline) have been reported, but these devices can suffer from poor performance due to the limited lateral current-carrying capacity of thin polymer films. Herein, hybrid solar-cell devices of a thin film of polyaniline deposited on silicon and covered by a single-walled carbon nanotube film are fabricated and characterized. These hybrid devices combine the conformal coverage given by the polymer and the excellent electrical properties of single-walled carbon nanotube films and significantly outperform either of their component counterparts. Treatment of the silicon base and carbon nanotubes with hydrofluoric acid and a strong oxidizer (thionyl chloride) leads to a significant improvement in performance.


Assuntos
Compostos de Anilina/química , Fontes de Energia Elétrica , Nanotubos de Carbono/química , Silício/química , Energia Solar
17.
Nanotechnology ; 24(1): 015710, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23220746

RESUMO

Static methods to determine the spring constant of AFM cantilevers have been widely used in the scientific community since the importance of such calibration techniques was established nearly 20 years ago. The most commonly used static techniques involve loading a trial cantilever with a known force by pressing it against a pre-calibrated standard or reference cantilever. These reference cantilever methods have a number of sources of uncertainty, which include the uncertainty in the measured spring constant of the standard cantilever, the exact position of the loading point on the reference cantilever and how closely the spring constant of the trial and reference cantilever match. We present a technique that enables users to minimize these uncertainties by creating spatial markers on reference cantilevers using a focused ion beam (FIB). We demonstrate that by combining FIB spatial markers with an inverted reference cantilever method, AFM cantilevers can be accurately calibrated without the tip of the test cantilever contacting a surface. This work also demonstrates that for V-shaped cantilevers it is possible to determine the precise loading position by AFM imaging the section of the cantilever where the two arms join. Removing tip-to-surface contact in both the reference cantilever method and sensitivity calibration is a significant improvement, since this is an important consideration for AFM users that require the imaging tip to remain in pristine condition before commencing measurements. Uncertainties of between 5 and 10% are routinely achievable with these methods.

18.
Sci Technol Adv Mater ; 14(3): 035004, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877577

RESUMO

Electrodes fabricated using commercially available silver nanowires (AgNWs) and single walled carbon nanotubes (SWCNTs) produced sheet resistances in the range 4-24 Ω â–¡-1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

19.
Nanotechnology ; 23(28): 285704, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22728463

RESUMO

A calibration method is presented for determining the spring constant of atomic force microscope (AFM) cantilevers, which is a modification of the established Cleveland added mass technique. A focused ion beam (FIB) is used to remove a well-defined volume from a cantilever with known density, substantially reducing the uncertainty usually present in the added mass method. The technique can be applied to any type of AFM cantilever; but for the lowest uncertainty it is best applied to silicon cantilevers with spring constants above 0.7 N m(-1), where uncertainty is demonstrated to be typically between 7 and 10%. Despite the removal of mass from the cantilever, the calibration method presented does not impair the probes' ability to acquire data. The technique has been extensively tested in order to verify the underlying assumptions in the method. This method was compared to a number of other calibration methods and practical improvements to some of these techniques were developed, as well as important insights into the behavior of FIB modified cantilevers. These results will prove useful to research groups concerned with the application of microcantilevers to nanoscience, in particular for cases where maintaining pristine AFM tip condition is critical.


Assuntos
Microscopia de Força Atômica/instrumentação , Calibragem , Desenho de Equipamento , Íons/química , Microscopia de Força Atômica/métodos , Silício/química
20.
Langmuir ; 28(25): 9431-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22582794

RESUMO

The structure of the dye layer adsorbed on the titania substrate in a dye-sensitized solar cell is of fundamental importance for the function of the cell, since it strongly influences the injection of photoelectrons from the excited dye molecules into the titania substrate. The adsorption isotherms of the N719 ruthenium-based dye were determined both with a direct method using the depth profiling technique neutral impact collision ion scattering spectroscopy (NICISS) and with the standard indirect solution depletion method. It is found that the dye layer adsorbed on the titania surface is laterally inhomogeneous in thickness and there is a growth mechanism already from low coverage levels involving a combination of monolayers and multilayers. It is also found that the amount of N719 adsorbed on the substrate depends on the titania structure. The present results show that dye molecules in dye-sensitized solar cells are not necessarily, as presumed, adsorbed as a self-assembled monolayer on the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...