Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273221

RESUMO

BackgroundVaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. Methods and FindingsA prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S and Ad26.COV2.S vaccines in adult PLWH, without prior COVID-19, compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response and reactogenicity. Between February-September 2021, 1154 PLWH (median age 53 [IQR 44-60], 86% male) and 440 controls (median age 43 [IQR 33-53], 29% male) were included. 884 PLWH received BNT162b2, 100 mRNA-1273, 150 ChAdOx1-S, and 20 Ad26.COV2.S. 99% were on antiretroviral therapy, 98% virally suppressed, and the median CD4+T-cell count was 710 cells/{micro}L [IQR 520-913]. 247 controls received mRNA-1273, 94 BNT162b2, 26 ChAdOx1-S and 73 Ad26.COV2.S. After mRNA vaccination, geometric mean concentration was 1418 BAU/mL in PLWH (95%CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV-status remained associated with a decreased response (0.607, 95%CI 0.508-0.725). In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+T-cell counts 250-500 cells/{micro}L (2.845, 95%CI 1.876-4.314) or >500 cells/{micro}L (2.936, 95%CI 1.961-4.394), whilst a viral load >50 copies/mL was associated with a reduced response (0.454, 95%CI 0.286-0.720). Increased IFN-{gamma}, CD4+, and CD8+T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation induced marker assays, comparable to controls. Reactogenicity was generally mild without vaccine-related SAE. ConclusionAfter vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH. To reach and maintain the same serological responses and vaccine efficacy as HIV-negative controls, additional vaccinations are probably required.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20229203

RESUMO

Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity (1). Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Projects (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with increased susceptibility for severe disease in individuals with defective monocyte-derived cytokine production; ii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy. One Sentence summaryIn this study, we explore the physiological significance of the genetic variants associated with COVID-19 severity using detailed clinical, immunological and multi-omics data from large cohorts. Our findings allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20147470

RESUMO

Structured abstractO_ST_ABSObjectiveC_ST_ABSChloroquine has been frequently administered for treatment of coronavirus disease 2019 but there are serious concerns about its efficacy and cardiac safety. Our objective was to investigate the pharmacokinetics and safety of chloroquine in hospitalized COVID-19 patients. DesignA prospective observational study. SettingDutch hospitals PatientsPatients admitted to the hospital for treatment of COVID-19. InterventionsPharmacokinetic sampling MeasurementsThe plasma concentrations of chloroquine and desethylchloroquine and QTc time. Main ResultsA total of 83 patients were included. The median (IQR) plasma concentration chloroquine during treatment was 1.05 mol/L (0.63 - 1.55 mol/L). None of the patients reached exposure exceeding the concentration to inhibit SARS-CoV-2 replication by 90% (IC90) of 6.9 M. Furthermore, {Delta}QTc >60 milliseconds occurred after initiation of chloroquine treatment in 34% patients and during treatment QTc [≥]500 milliseconds was observed in 46% of patients. ConclusionsRecommended dose chloroquine treatment results in plasma concentrations that are unlikely to inhibit viral replication. Furthermore, the incidence of QTc prolongation was high. The preclinical promise of chloroquine as antiviral treatment in patients with COVID-19 is overshadowed by its cardiac toxicity and lack of effective exposure. It is unlikely that a positive clinical effect will be found with chloroquine for treatment of COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20129304

RESUMO

Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. Heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n=10) and COVID-19 patients (n=48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity associated with disease severity including the need for intensive care and mechanical ventilation, lactate dehydrogenase levels and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20110916

RESUMO

BackgroundInfection with SARS-CoV-2 manifests itself as a mild respiratory tract infection in the majority of individuals, which progresses to a severe pneumonia and acute respiratory distress syndrome (ARDS) in 10-15% of patients. Inflammation plays a crucial role in the pathogenesis of ARDS, with immune dysregulation in severe COVID-19 leading to a hyperinflammatory response. A comprehensive understanding of the inflammatory process in COVID-19 is lacking. MethodsIn this prospective, multicenter observational study, patients with PCR-proven or clinically presumed COVID-19 admitted to the intensive care unit (ICU) or clinical wards were included. Demographic and clinical data were obtained and plasma was serially collected. Concentrations of IL-6, TNF-, complement components C3a, C3c and the terminal complement complex (TCC) were determined in plasma by ELISA. Additionally, 269 circulating biomarkers were assessed using targeted proteomics. Results were compared between ICU and non ICU patients. FindingsA total of 119 (38 ICU and 91 non ICU) patients were included. IL-6 plasma concentrations were elevated in COVID-19 (ICU vs. non ICU, median 174.5 pg/ml [IQR 94.5-376.3] vs. 40.0 pg/ml [16.5-81.0]), whereas TNF- concentrations were relatively low and not different between ICU and non ICU patients (median 24.0 pg/ml [IQR 16.5-33.5] and 21.5 pg/ml [IQR 16.0-33.5], respectively). C3a and terminal complement complex (TCC) concentrations were significantly higher in ICU vs. non ICU patients (median 556.0 ng/ml [IQR 333.3-712.5]) vs. 266.5 ng/ml [IQR 191.5-384.0] for C3a and 4506 mAU/ml [IQR 3661-6595] vs. 3582 mAU/ml [IQR 2947-4300] for TCC) on the first day of blood sampling. Targeted proteomics demonstrated that IL-6 (logFC 2.2), several chemokines and hepatocyte growth factor (logFC 1.4) were significantly upregulated in ICU vs. non ICU patients. In contrast, stem cell factor was significantly downregulated (logFC -1.3) in ICU vs. non ICU patients, as were DPP4 (logFC -0.4) and protein C inhibitor (log FC -1.0), the latter two factors also being involved in the regulation of the kinin-kallikrein pathway. Unsupervised clustering pointed towards a homogeneous pathogenetic mechanism in the majority of patients infected with SARS-CoV-2, with patient clustering mainly based on disease severity. InterpretationWe identified important pathways involved in dysregulation of inflammation in patients with severe COVID-19, including the IL-6, complement system and kinin-kallikrein pathways. Our findings may aid the development of new approaches to host-directed therapy. FundingVidi grant (F.L.v.d.V.) and Spinoza grant (M.G.N.) from the Netherlands Organization for Scientific Research, and ERC Advanced Grant (#833247 to M.G.N.).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...