Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IDCases ; 32: e01796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193002

RESUMO

We report an important case of periventricular white matter damage in a 1-month-old infant, demonstrated on high quality structural (T2) and diffusion weighted magnetic resonance imaging. The infant was born at term following an uneventful pregnancy and discharged home shortly after, but was brought to the paediatric emergency department five days after birth with seizures and respiratory distress, testing positive for COVID-19 infection on PCR. These images highlight the need to consider brain MRI in all infants with symptomatic SARS-Cov-2 infection, and show how this infection can lead to extensive white matter damage in the context of multisystem inflammation.

2.
Front Radiol ; 3: 1327075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304343

RESUMO

Introduction: Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system. Methods: Images were acquired from 35 neonates on 44 occasions (median age 39 + 6 postmenstrual weeks, range 33 + 4 to 52 + 6; median body weight 2.93 kg, range 1.57 to 5.3 kg) over a median time of 49 mins 30 s. Peripheral body temperature and physiological measures were recorded throughout scanning. Acquired sequences included T2 weighted (TSE), Actual Flip angle Imaging (AFI), functional MRI (BOLD EPI), susceptibility weighted imaging (SWI), and MR spectroscopy (STEAM). Results: There was no significant difference between temperature before and after scanning (p = 0.76) and image quality assessment compared favorably to state-of-the-art 3T acquisitions. Anatomical imaging demonstrated excellent sensitivity to structures which are typically hard to visualize at lower field strengths including the hippocampus, cerebellum, and vasculature. Images were also acquired with contrast mechanisms which are enhanced at ultra-high field including susceptibility weighted imaging, functional MRI, and MR spectroscopy. Discussion: We demonstrate safety and feasibility of imaging vulnerable neonates at ultra-high field and highlight the untapped potential for providing important new insights into brain development and pathological processes during this critical phase of early life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...