Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0135754, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26287818

RESUMO

The enolase produced by Streptococcus pyogenes is a homo-octamer whose overall shape resembles that of a donut. The octamer is best described as a tetramer of dimers. As such, it contains two types of interfaces. The first is common to almost all enolases as most enolases that have been studied are dimers. The second is unique to the octamers and includes residues near the carboxy-terminus. The primary sequence of the enolase contains 435 residues with an added 19 as an N-terminal hexahistine tag. We have systematically truncated the carboxy-terminus, individually removing the first 8 residues. This gave rise to a series of eight structures containing respectively, 435, 434, 433, 432, 431, 430, 429 and 427 residues. The truncations cause the protein to gradually dissociate from octamers to enzymatically inactive monomers with very small amounts of intermediate tetramers and dimers. We have evaluated the contributions of the missing residues to the monomer/octamer equilibrium using a combination of analytical ultracentrifugation and activity assays. For the dissociation reaction, octamer <== ==> 8 monomer truncation of all eight C-terminal residues resulted in a diminution in the standard Gibbs energy of dissociation of about 59 kJ/mole of octamer relative to the full length protein. Considering that this change is spread over eight subunits, this translates to a change in standard Gibbs interaction energy of less than 8 kJ/mole of monomer distributed over the eight monomers. The resulting proteins, containing 434, 433, 432, 431, 430, 429 and 427 residues per monomer, showed intermediate free energies of dissociation. Finally, three other mutations were introduced into our reference protein to establish how they influenced the equilibrium. The main importance of this work is it shows that for homo-multimeric proteins a small change in the standard Gibbs interaction energy between subunits can have major physiological effects.


Assuntos
Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Multimerização Proteica/genética , Streptococcus pyogenes/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Deleção de Sequência/genética , Streptococcus pyogenes/enzimologia , Termodinâmica
2.
PLoS One ; 5(1): e8810, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20098674

RESUMO

Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO(4), a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO(4) dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.


Assuntos
Fosfopiruvato Hidratase/metabolismo , Streptococcus pyogenes/enzimologia , Dicroísmo Circular , Dimerização , Cinética , Modelos Moleculares , Mutação , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/genética , Ligação Proteica , Conformação Proteica , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...