Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895359

RESUMO

Colorectal cancer (CRC) is one of the most common causes of death and the third most diagnosed cancer worldwide. The tumor microenvironment and cancer stem cells participate in colorectal tumor progression and can dictate malignancy. Nutrition status affects treatment response and the progression or recurrence of the tumor. This review summarizes the main bioactive compounds against the molecular pathways related to colorectal carcinogenesis. Moreover, we focus on the compounds with chemopreventive properties, mainly polyphenols and carotenoids, which are highly studied dietary bioactive compounds present in major types of food, like vegetables, fruits, and seeds. Their proprieties are antioxidant and gut microbiota modulation, important in the intestine because they decrease reactive oxygen species and inflammation, both principal causes of cancer. These compounds can promote apoptosis and inhibit cell growth, proliferation, and migration. Combined with oncologic treatment, a sensitization to first-line colorectal chemotherapy schemes, such as FOLFOX and FOLFIRI, is observed, making them an attractive and natural support in the oncologic treatment of CRC.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895919

RESUMO

A key problem in colorectal cancer (CRC) is the development of resistance to current therapies due to the presence of cancer stem cells (CSC), which leads to poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that activates apoptosis in cancer cells through union with TRAIL death receptors. Cell therapies as delivery systems can produce soluble TRAIL (sTRAIL) and full-length TRAIL (flTRAIL), showing a high capacity to produce apoptosis in vitro and in vivo assays. However, the apoptotic activity of TRAIL as monotherapy had limitations, so it is important to explore other ways to enhance susceptibility to TRAIL. This study evaluated the cytotoxic and proapoptotic activity of soluble TRAIL overexpressed by mesenchymal stem cells (MSC) in an oxaliplatin-resistant CRC cell line. Bone marrow-MSC were lentiviral transduced for soluble TRAIL expression. DR5 death receptor expression was determined in Caco-2 and CMT-93 CRC cell lines. Sensitivity to first-line chemotherapies and recombinant TRAIL was evaluated by half-maximal inhibitory concentrations. Cytotoxic and proapoptotic activity of soluble TRAIL-MSC alone and combined with chemotherapy pre-treatment was evaluated using co-cultures. Caco-2 and CMT-93 cell lines expressed 59.08 ± 5.071 and 51.65 ± 11.99 of DR5 receptor and had IC50 of 534.15 ng/mL and 581.34 ng/mL for recombinant murine TRAIL (rmTRAIL), respectively. This finding was classified as moderate resistance to TRAIL. The Caco-2 cell line showed resistance to oxaliplatin and irinotecan. MSC successfully overexpressed soluble TRAIL and induced cancer cell death at a 1:6 ratio in co-culture. Oxaliplatin pre-treatment in the Caco-2 cell line increased the cell death percentage (50%) and apoptosis by sTRAIL. This finding was statistically different from the negative control (p < 0.05), and activity was even higher with the oxaliplatin-flTRAIL combination. Thus, oxaliplatin increases apoptotic activity induced by soluble TRAIL in a chemoresistant CRC cell line.

3.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175871

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with properties, such as self-renewal, differentiation, and tumorigenicity. CSCs have been proposed as a plausible therapeutic target as they are responsible for tumor recurrence, metastasis, and conventional therapy resistance. Selectively targeting CSCs is a promising strategy to eliminate the propagation of tumor cells and impair overall tumor development. Recent research shows that several immune cells play a crucial role in regulating tumor cell proliferation by regulating different CSC maintenance or proliferation pathways. There have been great advances in cellular immunotherapy using T cells, natural killer (NK) cells, macrophages, or stem cells for the selective targeting of tumor cells or CSCs in colorectal cancer (CRC). This review summarizes the CRC molecular profiles that may benefit from said therapy and the main vehicles used in cell therapy against CSCs. We also discuss the challenges, limitations, and advantages of combining conventional and/or current targeted treatments in the late stages of CRC.


Assuntos
Neoplasias do Colo , Humanos , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/metabolismo , Recidiva Local de Neoplasia/patologia , Imunoterapia
4.
Technol Cancer Res Treat ; 22: 15330338231163677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938618

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver cancer. It is highly lethal and has high recurrence. Death among HCC patients occur mainly due to tumor progression, recurrence, metastasis, and chemoresistance. Cancer stem cells (CSCs) are cell subpopulations within the tumor that promote invasion, recurrence, metastasis, and drug resistance. Hepatic stellate cells (HSCs) are important components of the tumor microenvironment (TME) responsible for primary secretory ECM proteins during liver injury and inflammation. These cells promote fibrogenesis, infiltrate the tumor stroma, and contribute to HCC development. Interactions between HSC and CSC and their microenvironment help promote carcinogenesis through different mechanisms. This review summarizes the roles of CSCs and HSCs in establishing the TME in primary liver tumors and describes their involvement in HCC chemoresistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Linhagem Celular Tumoral , Movimento Celular , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
5.
Biomedicines ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831131

RESUMO

BACKGROUND: Cancer treatment has many side effects; therefore, more efficient treatments are needed. Mesenchymal stem cells (MSC) have immunoregulatory properties, tumor site migration and can be genetically modified. Some proteins, such as soluble TRAIL (sTRAIL) and interleukin-12 (IL-12), have shown antitumoral potential, thus its combination in solid tumors could increase their activity. MATERIALS AND METHODS: Lentiviral transduction of bone marrow MSC with green fluorescent protein (GFP) and transgenes (sTRAIL and IL-12) was confirmed by fluorescence microscopy and Western blot. Soluble TRAIL levels were quantified by ELISA. Lymphoma L5178Y cells express a reporter gene (GFP/mCherry), and TRAIL receptor (DR5). RESULTS: An in vivo model showed that combined treatment with MSC expressing sTRAIL+IL-12 or IL-12 alone significantly reduced tumor volume and increased survival in BALB/c mice (p < 0.05) with only one application. However, at the histological level, only MSC expressing IL-12 reduced tumor cell infiltration significantly in the right gastrocnemius compared with the control group (p < 0.05). It presented less tissue dysplasia confirmed by fluorescence and hematoxylin-eosin dye; nevertheless, treatment not inhibited hepatic metastasis. CONCLUSIONS: MSC expressing IL-12, is or combination with BM-MSC expressing sTRAIL represents an antitumor strategy for lymphoma tumors since they increase survival and reduce tumor development. However, the combination did not show significative additive effect. The localized application did not inhibit metastasis but reduced morphological alterations of tissue associated with liver metastasis.

6.
Life (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36836777

RESUMO

Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.

7.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010940

RESUMO

Gastrointestinal adenocarcinomas are one of the world's deadliest cancers. Cancer stem cells and the tissue microenvironment are highly regulated by cell and molecular mechanisms. Cancer stem cells are essential for maintenance and progression and are associated with resistance to conventional treatments. This article reviews the current knowledge of the role of the microenvironment during the primary establishment of gastrointestinal adenocarcinomas in the stomach, colon, and rectum and its relationship with cancer stem cells. We also describe novel developments in cancer therapeutics, such as targeted therapy, and discuss the advantages and disadvantages of different treatments for improving gastrointestinal cancer prognosis.

8.
Mol Med Rep ; 25(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485288

RESUMO

As the understanding of cancer grows, new therapies have been proposed to improve the well-known limitations of current therapies, whose efficiency relies mostly on early detection, surgery and chemotherapy. Mesenchymal stem cells (MSCs) have been introduced as a promissory and effective therapy. This fact is due to several useful features of MSCs, such as their accessibility and easy culture and expansion in vitro, and their remarkable ability for 'homing' towards tumors, allowing MSCs to exert their anticancer effects directly into tumors. Additionally, MSCs offer the practicability of being genetically engineered to carry anticancer genes, increasing their specificity and efficacy for fighting tumors. In the present study, the antitumoral efficacy and post-implant survival of mice bearing lymphomas implanted intratumorally were determined using mouse bone marrow-derived (BM)-MSCs transduced with soluble TRAIL (sTRAIL), full length TRAIL (flTRAIL), or interferon ß (IFNß), naïve BM-MSCs, or combinations of these. The percentage of surviving mice was determined once all not-implanted mice succumbed. It was found that the percentage of surviving mice implanted with the combination of MSCs-sTRAIL and MSCs-IFN-ß was 62.5%. Lymphoma model achieved 100% fatality in the non-treated group by day 41. On the other hand, the percentage of surviving mice implanted with MSCs-sTRAIL was 50% and with MSCs-INFß 25%. All the aforementioned differences were statistically significant (P<0.05). In conclusion, all implants exhibited tumor size reduction, growth delay, or apparent tumor clearance. MSCs proved to be effective anti-lymphoma agents; additionally, the combination of soluble TRAIL and IFN-ß resulted in the most effective antitumor and life enlarging treatment, showing an additive antitumoral effect compared with individual treatments.


Assuntos
Linfoma , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Hipertrofia , Interferon beta/genética , Linfoma/genética , Linfoma/terapia , Camundongos
9.
Pharmaceutics ; 13(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371753

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.

10.
Mol Med Rep ; 24(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396431

RESUMO

Colorectal cancer (CRC) is one of the main causes of mortality. Recent studies suggest that cancer stem cells (CSCs) can survive after chemotherapy and promote tumor invasiveness and aggression. According to a higher hierarchy complexity of CSC, different protocols for isolation, expansion, and characterization have been used; however, there are no available resistance biomarkers that allow predicting the clinical response of treatment 5­fluorouracil (5FU) and oxaliplatin. Therefore, the primary aim of the present study was to analyze the expression of gene resistance on tumors and CSC­derived isolates from patients CRC. In the present study, adenocarcinomas of the colon and rectum (CRAC) were classified based on an in vitro adenosine triphosphate­based chemotherapy response assay, as sensitive and resistant and the percentage of CD24 and CD44 markers are evaluated by immunohistochemistry. To isolate resistant colon­CSC, adenocarcinoma tissues resistant to 5FU and oxaliplatin were evaluated. Finally, all samples were sequenced using a custom assay with chemoresistance­associated genes to find a candidate gene on resistance colon­CSC. Results showed that 59% of the CRC tissue analyzed was resistant and had a higher percentage of CD44 and CD24 markers. An association was found in the expression of some genes between the tumor­resistant tissue and CSC. Overall, isolates of the CSC population CD44+ resistant to 5FU and oxaliplatin demonstrated different expression profiles; however, the present study was able to identify overexpression of the KRT­18 gene, in most of the isolates. In conclusion, the results of the present study showed overexpression of KRT­18 in CD44+ cells is associated with chemoresistance to 5FU and oxaliplatin in CRAC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Antígeno CD24 , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Oxaliplatina/farmacologia
11.
World J Gastroenterol ; 27(26): 4160-4171, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34326616

RESUMO

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that causes coronavirus disease-2019 (COVID-19) has provoked a global pandemic, mainly affecting the respiratory tract; however, a percentage of infected individuals can develop gastrointestinal (GI) symptoms. Some studies describe the development of GI symptoms and how they affect the progression of COVID-19. In this review, we summarize the main mechanisms associated with gut damage during infection by SARS-CoV-2 as well as other organs such as the liver and pancreas. Not only are host factors associated with severe COVID-19 but intestinal microbiota dysbiosis is also observed in patients with severe disease.


Assuntos
COVID-19 , Gastroenteropatias , Microbioma Gastrointestinal , COVID-19/complicações , Disbiose , Gastroenteropatias/virologia , Trato Gastrointestinal , Humanos , Inflamação/virologia
12.
Pharmaceutics ; 13(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466892

RESUMO

Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.

13.
Front Oncol ; 10: 1511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974184

RESUMO

Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial-mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...