Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(1): e0006356, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650071

RESUMO

The Onchocerca ochengi adult implant and Brugia malayi microfilariemic Severe-Combined Immunodeficient (SCID) mouse models are validated screens to measure macrofilaricidal and microfilaricidal activities of candidate onchocerciasis drugs. The purpose of this study was to assess whether 5 daily sub-cutaneous (s.c.) injections of standard flubendazole (FBZ) suspension (10mg/kg), a single s.c. injection (10mg/kg) or 5 daily repeated oral doses of FBZ amorphous solid dispersion (ASD) formulation (0.2, 1.5 or 15mg/kg) mediated macrofilaricidal efficacy against O. ochengi male worms implanted into SCID mice. The direct microfilaricidal activity against circulating B. malayi microfilariae of single dose FBZ ASD formulation (2 or 40 mg/kg) was also evaluated and compared against the standard microfilaricide, ivermectin (IVM). Systemic exposures of FBZ/FBZ metabolites achieved following dosing were measured by pharmacokinetic (PK) bioanalysis. At necropsy, five weeks following start of FBZ SC injections, there were significant reductions in burdens of motile O. ochengi worms following multiple injections (93%) or single injection (82%). Further, significant proportions of mice dosed following multiple injections (5/6; 83%) or single injection (6/10; 60%) were infection negative (drug-cured). In comparison, no significant reduction in recovery of motile adult O. ochengi adult worms was obtained in any multiple-oral dosage group. Single oral-dosed FBZ did not mediate any significant microfilaricidal activity against circulating B. malayi mf at 2 or 7 days compared with >80% efficacy of single dose IVM. In conclusion, multiple oral FBZ formulation doses, whilst achieving substantial bioavailability, do not emulate the efficacy delivered by the parenteral route in vivo against adult O. ochengi. PK analysis determined FBZ efficacy was related to sustained systemic drug levels rather than achievable Cmax. PK modelling predicted that oral FBZ would have to be given at low dose for up to 5 weeks in the mouse model to achieve a matching efficacious exposure profile.


Assuntos
Brugia Malayi/efeitos dos fármacos , Filaricidas/farmacologia , Mebendazol/análogos & derivados , Microfilárias/efeitos dos fármacos , Onchocerca/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Administração Oral , Animais , Modelos Animais de Doenças , Filaricidas/administração & dosagem , Ivermectina/administração & dosagem , Ivermectina/farmacologia , Masculino , Mebendazol/administração & dosagem , Mebendazol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Carga Parasitária
2.
PLoS Negl Trop Dis ; 13(1): e0006787, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650084

RESUMO

River blindness and lymphatic filariasis are two filarial diseases that globally affect millions of people mostly in impoverished countries. Current mass drug administration programs rely on drugs that primarily target the microfilariae, which are released from adult female worms. The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimination of these diseases, a safe and effective drug that kills the adult stage is needed. The benzimidazole anthelmintic flubendazole (FBZ) is 100% efficacious as a macrofilaricide in experimental filarial rodent models but it must be administered subcutaneously (SC) due to its low oral bioavailability. Studies were undertaken to assess the efficacy of a new oral amorphous solid dispersion (ASD) formulation of FBZ on Brugia pahangi infected jirds (Meriones unguiculatus) and compare it to a single or multiple doses of FBZ given subcutaneously. Results showed that worm burden was not significantly decreased in animals given oral doses of ASD FBZ (0.2-15 mg/kg). Regardless, doses as low as 1.5 mg/kg caused extensive ultrastructural damage to developing embryos and microfilariae (mf). SC injections of FBZ in suspension (10 mg/kg) given for 5 days however, eliminated all worms in all animals, and a single SC injection reduced worm burden by 63% compared to the control group. In summary, oral doses of ASD formulated FBZ did not significantly reduce total worm burden but longer treatments, extended takedown times or a second dosing regimen, may decrease female fecundity and the number of mf shed by female worms.


Assuntos
Brugia pahangi/efeitos dos fármacos , Filariose , Filaricidas/uso terapêutico , Mebendazol/análogos & derivados , Microfilárias/efeitos dos fármacos , Administração Oral , Animais , Modelos Animais de Doenças , Feminino , Filariose/tratamento farmacológico , Filariose/prevenção & controle , Filariose/transmissão , Filaricidas/administração & dosagem , Gerbillinae/parasitologia , Injeções Subcutâneas , Masculino , Mebendazol/administração & dosagem , Mebendazol/uso terapêutico , Carga Parasitária
3.
PLoS Negl Trop Dis ; 13(1): e0006320, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650105

RESUMO

Flubendazole (FBZ) is highly efficacious against filarial nematodes after parenteral administration and presents a promising macrofilaricidal drug candidate for the elimination of onchocerciasis and other filariae. In the present study the efficacy of a newly developed bioavailable amorphous solid dispersion (ASD) oral formulation of FBZ was investigated in the Litomosoides sigmodontis jird model. FBZ was administered to chronically infected, microfilariae-positive jirds by single (40mg/kg), repeated (2, 6 or 15mg/kg for 5 or 10 days) oral (OR) doses or single subcutaneous (SC) injections (2 or 10mg/kg). Jirds treated with 5 SC injections at 10mg/kg served as positive controls, with untreated animals used as negative controls. After OR doses, FBZ is rapidly absorbed and cleared and the exposures increased dose proportionally. SC administered FBZ was slowly released from the injection site and plasma levels remained constant up to necropsy eight weeks after treatment end. Increasing single SC doses caused less than dose-proportional exposures. At necropsy, all animals receiving 1x or 5x 10mg/kg SC FBZ had cleared all adult worms and the 1x 2mg/kg SC treatment had reduced the adult worm burden by 98%. 10x 15mg/kg OR FBZ reduced the adult worm burden by 95%, whereas 1x 40mg/kg and 5x 15mg/kg OR reduced the worm burden by 85 and 84%, respectively. Microfilaremia was completely cleared at necropsy in all animals of the SC treatment regimens, while all oral FBZ treatment regimens reduced the microfilaremia by >90% in a dose and duration dependent manner. In accordance, embryograms from female worms revealed a FBZ dose and duration dependent inhibition of embryogenesis. Histological analysis of the remaining female adult worms showed that FBZ had damaged the body wall, intestine and most prominently the uterus and uterine content. Results of this study demonstrate that single and repeated SC injections and repeated oral administrations of FBZ have an excellent macrofilaricidal effect.


Assuntos
Filariose/tratamento farmacológico , Filaricidas/farmacologia , Filaricidas/farmacocinética , Filarioidea/efeitos dos fármacos , Mebendazol/análogos & derivados , Administração Oral , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Filariose/parasitologia , Filaricidas/administração & dosagem , Filarioidea/embriologia , Gerbillinae/parasitologia , Mebendazol/administração & dosagem , Mebendazol/farmacocinética , Mebendazol/farmacologia , Carga Parasitária
4.
Bioorg Med Chem Lett ; 19(9): 2492-6, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19342234

RESUMO

Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC(50)=400nM and 270nM, respectively) and selective (CC(50)>20muM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.


Assuntos
Antivirais/síntese química , Benzodiazepinas/química , Química Farmacêutica/métodos , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Acrilatos/química , Antivirais/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Hepacivirus/enzimologia , Humanos , Concentração Inibidora 50 , Modelos Químicos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Antimicrob Agents Chemother ; 52(12): 4420-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18852280

RESUMO

The exogenous control of hepatitis C virus (HCV) replication can be mediated through the inhibition of the RNA-dependent RNA polymerase (RdRp) activity of NS5B. Small-molecule inhibitors of NS5B include nucleoside and nonnucleoside analogs. Here, we report the discovery of a novel class of HCV polymerase nonnucleoside inhibitors, 1,5-benzodiazepines (1,5-BZDs), identified by high-throughput screening of a library of small molecules. A fluorescence-quenching assay and X-ray crystallography revealed that 1,5-BZD 4a bound stereospecifically to NS5B next to the catalytic site. When introduced into replicons, mutations known to confer resistance against chemotypes that bind at this site were detrimental to inhibition by 1,5-BZD 7a. Using a panel of enzyme isolates that covered genotypes 1 to 6, we showed that compound 4a inhibited genotype 1 only. In mechanistic studies, 4a was found to inhibit the RdRp activity of NS5B noncompetitively with GTP and to inhibit the formation of the first phosphodiester bond during the polymerization cycle. The specificity for the HCV target was evaluated by profiling the 1,5-BZDs against other viral and human polymerases, as well as BZD receptors.


Assuntos
Benzodiazepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/metabolismo , Antivirais/farmacologia , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
J Virol ; 81(13): 6909-19, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17459932

RESUMO

The search for hepatitis C virus polymerase inhibitors has resulted in the identification of several nonnucleoside binding pockets. The shape and nature of these binding sites differ across and even within diverse hepatitis C virus genotypes. These differences confront antiviral drug discovery with the challenge of finding compounds that are capable of inhibition in variable binding pockets. To address this, we have established a hepatitis C virus mutant and genotypic recombinant polymerase panel as a means of guiding medicinal chemistry through the elucidation of the site of action of novel inhibitors and profiling against genotypes. Using a genotype 1b backbone, we demonstrate that the recombinant P495L, M423T, M414T, and S282T mutant enzymes can be used to identify the binding site of an acyl pyrrolidine analog. We assess the inhibitory activity of this analog and other nonnucleoside inhibitors with our panel of enzyme isolates generated from clinical sera representing genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a, and 6a.


Assuntos
Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Pirrolidinas/química , RNA Polimerase Dependente de RNA/química , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Genótipo , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética
7.
J Nat Prod ; 65(5): 789-93, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12027771

RESUMO

Ajuga remota is the most frequently used medicinal herb for malaria treatment in Kenya. Its two known isolates ajugarin-1 (1) and ergosterol-5,8-endoperoxide (3) and a new isolate 8-O-acetylharpagide (2) were evaluated for their in vitro antiplasmodial activity. Ajugarin-1 was moderately active, with an IC(50) of 23.0 +/- 3.0 microM, as compared to chloroquine (IC(50) = 0.041 +/- 0.003 microM) against the chloroquine-sensitive (FCA 20/GHA) strain of Plasmodium falciparum. Ergosterol-5,8-endoperoxide was about 3x as potent (IC(50) = 8.2 +/- 1.1 microM), while 8-O-acetylharpagide, whose structure was established by spectroscopic evidence, was inactive. Both ajugarin-1 and ergosterol-5,8-endoperoxide did not exhibit cytotoxicity against A431 (skin carcinoma) cell line, but 8-O-acetylharpagide was significantly cytotoxic. This iridoid glucoside, which has been formerly isolated from Ajuga decumbens, was identified in A. remota for the first time.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Ergosterol/análogos & derivados , Lamiaceae/química , Plantas Medicinais/química , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cloroquina/farmacologia , Cromatografia em Camada Fina , Diterpenos/química , Diterpenos/isolamento & purificação , Resistência Microbiana a Medicamentos/fisiologia , Ensaios de Seleção de Medicamentos Antitumorais , Ergosterol/síntese química , Fluoruracila/farmacologia , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Quênia , L-Lactato Desidrogenase/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Neoplasias Cutâneas , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...