Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6639, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095146

RESUMO

Endoglin (ENG) is a single-pass transmembrane protein highly expressed on vascular endothelial cells, although low expression levels can be detected in many other cell types. Its extracellular domain can be found in circulation known as soluble endoglin (sENG). Levels of sENG are elevated in many pathological conditions, in particular preeclampsia. We have shown that while loss of cell surface ENG decreases BMP9 signaling in endothelial cells, knocking down ENG in blood cancer cells enhances BMP9 signaling. Despite sENG binding to BMP9 with high affinity and blocking the type II receptor binding site on BMP9, sENG did not inhibit BMP9 signaling in vascular endothelial cells, but the dimeric form of sENG inhibited BMP9 signaling in blood cancer cells. Here we report that in non-endothelial cells such as human multiple myeloma cell lines and the mouse myoblast cell line C2C12, both monomeric and dimeric forms of sENG inhibit BMP9 signaling when present at high concentrations. Such inhibition can be alleviated by the overexpression of ENG and ACVRL1 (encoding ALK1) in the non-endothelial cells. Our findings suggest that the effects of sENG on BMP9 signaling is cell-type specific. This is an important consideration when developing therapies targeting the ENG and ALK1 pathway.


Assuntos
Células Endoteliais , Receptores de Fatores de Crescimento , Camundongos , Gravidez , Animais , Feminino , Humanos , Endoglina/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Fosforilação , Ligação Proteica , Células Endoteliais/metabolismo , Receptores de Activinas Tipo II/metabolismo
2.
Cell Commun Signal ; 21(1): 25, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717825

RESUMO

BACKGROUND: The immunophilin FKBP12 binds to TGF-ß family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS: Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS: FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS: In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.


Assuntos
Receptores de Ativinas Tipo I , Mieloma Múltiplo , Proteína 1A de Ligação a Tacrolimo , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , RNA Interferente Pequeno , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Receptores de Ativinas Tipo I/metabolismo
3.
Chem Sci ; 12(44): 14758-14765, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820091

RESUMO

Methyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.1] aza-amides, robustly leading to a 2 to 10-fold increase in binding affinity for FK506-binding proteins (FKBPs). This resulted in the most potent and efficient FKBP ligands known to date. By a combination of co-crystal structures, isothermal titration calorimetry (ITC), density-functional theory (DFT), and 3D reference interaction site model (3D-RISM) calculations we elucidated the origin of the observed affinity boost, which was purely entropically driven and relied on the displacement of a water molecule at the protein-ligand-bulk solvent interface. The best compounds potently occupied FKBPs in cells and enhanced bone morphogenic protein (BMP) signaling. Our results show how subtle manipulation of the solvent network can be used to design atom-efficient ligands for difficult, solvent-exposed binding pockets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...