Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Commun Biol ; 5(1): 590, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710943

RESUMO

Aging is a major risk factor for developing severe COVID-19, but few detailed data are available concerning immunological changes after infection in aged individuals. Here we describe main immune characteristics in 31 patients with severe SARS-CoV-2 infection who were >70 years old, compared to 33 subjects <60 years of age. Differences in plasma levels of 62 cytokines, landscape of peripheral blood mononuclear cells, T cell repertoire, transcriptome of central memory CD4+ T cells, specific antibodies are reported along with features of lung macrophages. Elderly subjects have higher levels of pro-inflammatory cytokines, more circulating plasmablasts, reduced plasmatic level of anti-S and anti-RBD IgG3 antibodies, lower proportions of central memory CD4+ T cells, more immature monocytes and CD56+ pro-inflammatory monocytes, lower percentages of circulating follicular helper T cells (cTfh), antigen-specific cTfh cells with a less activated transcriptomic profile, lung resident activated macrophages that promote collagen deposition and fibrosis. Our study underlines the importance of inflammation in the response to SARS-CoV-2 and suggests that inflammaging, coupled with the inability to mount a proper anti-viral response, could exacerbate disease severity and the worst clinical outcome in old patients.


Assuntos
COVID-19 , Idoso , Citocinas , Humanos , Leucócitos Mononucleares , SARS-CoV-2 , Células T Auxiliares Foliculares
2.
Methods Mol Biol ; 2386: 129-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766269

RESUMO

Mass cytometry, or cytometry by time-of-flight (the basis for Fluidigm® CyTOF® technology), is a system for single-cell detection using antibodies tagged with metal probes. Without the need for compensation, the highly parametric Helios™ mass cytometer has a detection range of 135 distinct mass channels (75-209 Da). Optimized for mass cytometry, the Maxpar® Direct™ Immune Profiling Assay™ is a dry, metal-tagged antibody cocktail for immunophenotyping 37 immune cell populations found in human peripheral blood in a single tube. The Maxpar Direct Assay utilizes 31 mass channels for marker detection and live/dead viability staining, with at least 14 additional marker channels available from the Fluidigm catalog for flexible custom panel design. Here, we describe a workflow combining the assay with additional surface and intracellular cytokine antibodies for peripheral blood mononuclear cell (PBMC) staining using lanthanide-, bismuth-, and cadmium-tagged antibodies.


Assuntos
Citocinas/análise , Anticorpos , Biomarcadores , Citometria de Fluxo , Humanos , Imunofenotipagem , Espaço Intracelular , Leucócitos Mononucleares/imunologia , Coloração e Rotulagem , Fluxo de Trabalho
4.
Nat Commun ; 12(1): 4677, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326336

RESUMO

SARS-CoV-2 infection can affect all human beings, including pregnant women. Thus, understanding the immunological changes induced by the virus during pregnancy is nowadays of pivotal importance. Here, using peripheral blood from 14 pregnant women with asymptomatic or mild SARS-CoV-2 infection, we investigate cell proliferation and cytokine production, measure plasma levels of 62 cytokines, and perform a 38-parameter mass cytometry analysis. Our results show an increase in low density neutrophils but no lymphopenia or gross alterations of white blood cells, which display normal levels of differentiation, activation or exhaustion markers and show well preserved functionality. Meanwhile, the plasma levels of anti-inflammatory cytokines such as interleukin (IL)-1RA, IL-10 and IL-19 are increased, those of IL-17, PD-L1 and D-dimer are decreased, but IL-6 and other inflammatory molecules remain unchanged. Our profiling of antiviral immune responses may thus help develop therapeutic strategies to avoid virus-induced damages during pregnancy.


Assuntos
COVID-19/imunologia , Citocinas/sangue , Inflamação/imunologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Infecções Assintomáticas , Biomarcadores/sangue , COVID-19/sangue , COVID-19/virologia , Estudos de Casos e Controles , Estudos Transversais , Citocinas/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/prevenção & controle , Inflamação/virologia , Pessoa de Meia-Idade , Gravidez , Complicações Infecciosas na Gravidez/sangue , SARS-CoV-2/isolamento & purificação , Adulto Jovem
5.
Gastroenterology ; 160(4): 1359-1372.e13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307028

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS: We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS: Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.


Assuntos
Caderinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Animais , Caderinas/antagonistas & inibidores , Caderinas/genética , Fibroblastos Associados a Câncer/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metalotioneína 3 , Camundongos , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Gencitabina
6.
Cancer Res ; 74(3): 829-39, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24335958

RESUMO

The epithelial-mesenchymal transition (EMT) enhances cellular invasiveness and confers tumor cells with cancer stem cell-like characteristics, through transcriptional and translational mechanisms. The mechanisms maintaining transcriptional and translational repression of EMT and cellular invasion are poorly understood. Herein, the cell fate determination factor Dachshund (DACH1), suppressed EMT via repression of cytoplasmic translational induction of Snail by inactivating the Y box-binding protein (YB-1). In the nucleus, DACH1 antagonized YB-1-mediated oncogenic transcriptional modules governing cell invasion. DACH1 blocked YB-1-induced mammary tumor growth and EMT in mice. In basal-like breast cancer, the reduced expression of DACH1 and increased YB-1 correlated with poor metastasis-free survival. The loss of DACH1 suppression of both cytoplasmic translational and nuclear transcriptional events governing EMT and tumor invasion may contribute to poor prognosis in basal-like forms of breast cancer, a relatively aggressive disease subtype.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas do Olho/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Transição Epitelial-Mesenquimal/genética , Proteínas do Olho/química , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Camundongos , Invasividade Neoplásica , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box/química
7.
Cancer Res ; 74(2): 508-19, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24282282

RESUMO

Improved clinical management of prostate cancer has been impeded by an inadequate understanding of molecular genetic elements governing tumor progression. Gene signatures have provided improved prognostic indicators of human prostate cancer. The TGF-ß/BMP-SMAD4 signaling pathway, which induces epithelial-mesenchymal transition (EMT), is known to constrain prostate cancer progression induced by Pten deletion. Herein, cyclin D1 inactivation reduced cellular proliferation in the murine prostate in vivo and in isogenic oncogene-transformed prostate cancer cell lines. The in vivo cyclin D1-mediated molecular signature predicted poor outcome of recurrence-free survival for patients with prostate cancer (K-means HR, 3.75, P = 0.02) and demonstrated that endogenous cyclin D1 restrains TGF-ß, Snail, Twist, and Goosecoid signaling. Endogenous cyclin D1 enhanced Wnt and ES cell gene expression and expanded a prostate stem cell population. In chromatin immunoprecipitation sequencing, cyclin D1 occupied genes governing stem cell expansion and induced their transcription. The coordination of EMT restraining and stem cell expanding gene expression by cyclin D1 in the prostate may contribute to its strong prognostic value for poor outcome in biochemical-free recurrence in human prostate cancer.


Assuntos
Ciclina D1/fisiologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Recidiva , Transdução de Sinais , Resultado do Tratamento
8.
Oncotarget ; 4(6): 923-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23798621

RESUMO

Breast cancer is a leading form of cancer in the world. The Drosophila Dac gene was cloned as an inhibitor of the hyperactive epidermal growth factor (EGFR), ellipse. Herein, endogenous DACH1 co-localized with p53 in a nuclear, extranucleolar compartment and bound to p53 in human breast cancer cell lines, p53 and DACH1 bound common genes in Chip-Seq. Full inhibition of breast cancer contact-independent growth by DACH1 required p53. The p53 breast cancer mutants R248Q and R273H, evaded DACH1 binding. DACH1 phosphorylation at serine residue (S439) inhibited p53 binding and phosphorylation at p53 amino-terminal sites (S15, S20) enhanced DACH1 binding. DACH1 binding to p53 was inhibited by NAD-dependent deacetylation via DACH1 K628. DACH1 repressed p21CIP1 and induced RAD51, an association found in basal breast cancer. DACH1 inhibits breast cancer cellular growth in an NAD and p53-dependent manner through direct protein-protein association.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas do Olho/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sequência de Aminoácidos , Apoptose/fisiologia , Sítios de Ligação , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Proteínas do Olho/genética , Feminino , Expressão Gênica , Células HEK293 , Humanos , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Proteína Supressora de Tumor p53/genética
9.
Cancer Res ; 73(11): 3262-74, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23492369

RESUMO

Hyperactive EGF receptor (EGFR) and mutant p53 are common genetic abnormalities driving the progression of non-small cell lung cancer (NSCLC), the leading cause of cancer deaths in the world. The Drosophila gene Dachshund (Dac) was originally cloned as an inhibitor of hyperactive EGFR alleles. Given the importance of EGFR signaling in lung cancer etiology, we examined the role of DACH1 expression in lung cancer development. DACH1 protein and mRNA expression was reduced in human NSCLC. Reexpression of DACH1 reduced NSCLC colony formation and tumor growth in vivo via p53. Endogenous DACH1 colocalized with p53 in a nuclear, extranucleolar location, and shared occupancy of -15% of p53-bound genes in ChIP sequencing. The C-terminus of DACH1 was necessary for direct p53 binding, contributing to the inhibition of colony formation and cell-cycle arrest. Expression of the stem cell factor SOX2 was repressed by DACH1, and SOX2 expression was inversely correlated with DACH1 in NSCLC. We conclude that DACH1 binds p53 to inhibit NSCLC cellular growth.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteínas do Olho/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas do Olho/genética , Feminino , Genes p53 , Células HCT116 , Células HEK293 , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Rad51 Recombinase/antagonistas & inibidores , Rad51 Recombinase/metabolismo , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/genética
10.
J Cell Physiol ; 228(7): 1482-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23254450

RESUMO

The v-src oncogene is one of only two oncogenes capable of transforming mouse embryo fibroblasts (MEFs) lacking the IGF-IR gene (R-cells). R-/v-src cells grow robustly in the absence of serum, suggesting the hypothesis that they may produce one or more growth factors that would sustain their ability to proliferate in serum-free condition. Using proteomic approaches on serum-free conditioned media derived from v-src-transformed cells, we have identified two growth promoting factors: ostepontin and proliferin. Subsequent experiments have indicated that osteopontin plays a prevalent role in promoting growth of v-src-transformed cells in serum-deprived condition.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Genes src , Glicoproteínas/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Osteopontina/biossíntese , Animais , Linhagem Celular , Meios de Cultura Livres de Soro , Técnicas de Silenciamento de Genes , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Osteopontina/antagonistas & inibidores , Osteopontina/genética , Prolactina , Proteômica , Receptor IGF Tipo 1/deficiência , Receptor IGF Tipo 1/genética , Transdução de Sinais
11.
J Proteome Res ; 11(4): 2236-46, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22356716

RESUMO

Progression of invasive carcinoma involves the deregulation of molecular signaling pathways that results in the acquisition of oncogenic phenotypes. Functional enrichment analysis allows for the identification of deregulated pathways from omics scale expression data. Given the importance of post-transcriptional regulatory mechanisms on protein expression and function, identification of deregulated pathways on the basis of protein expression data is likely to provide new insights. In this study, we have developed methods for label-based mass spectrometry in a large number of samples and applied these methods toward identification and quantification of protein expression in samples of infiltrating ductal carcinoma, benign breast growths, and normal adjacent tissue. We identified 265 proteins with differential expression patterns in infiltrating ductal carcinoma relative to benign growths or normal breast tissue. Analysis of the differentially expressed proteins indicated the deregulation of signaling pathways related to proliferation, invasion and metastasis, and immune response. Our approach provides complementary information to gene expression microarray data and identifies a number of deregulated molecular signaling pathways indicative of breast cancer progression that may enable more accurate, biologically relevant diagnoses and provide a stepping stone to personalized treatment.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Proteoma/análise , Proteômica/métodos , Microambiente Tumoral , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/patologia , Cromatografia Líquida , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Proteoma/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
12.
Adv Bioinformatics ; 2011: 608295, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190923

RESUMO

Identification of regulatory molecules in signaling pathways is critical for understanding cellular behavior. Given the complexity of the transcriptional gene network, the relationship between molecular expression and phenotype is difficult to determine using reductionist experimental methods. Computational models provide the means to characterize regulatory mechanisms and predict phenotype in the context of gene networks. Integrating gene expression data with phenotypic data in transcriptional network models enables systematic identification of critical molecules in a biological network. We developed an approach based on fuzzy logic to model cell budding in Saccharomyces cerevisiae using time series expression microarray data of the cell cycle. Cell budding is a phenotype of viable cells undergoing division. Predicted interactions between gene expression and phenotype reflected known biological relationships. Dynamic simulation analysis reproduced the behavior of the yeast cell cycle and accurately identified genes and interactions which are essential for cell viability.

13.
J Proteomics ; 75(2): 366-74, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21851866

RESUMO

Molecular biomarkers of early stage breast cancer may improve the sensitivity and specificity of diagnosis. Plasma biomarkers have additional value in that they can be monitored with minimal invasiveness. Plasma biomarker discovery by genome-wide proteomic methods is impeded by the wide dynamic range of protein abundance and the heterogeneity of protein expression in healthy and disease populations which requires the analysis of a large number of samples. We addressed these issues through the development of a novel protocol that couples a combinatorial peptide ligand library protein enrichment strategy with isobaric label-based 2D LC-MS/MS for the identification of candidate biomarkers in high throughput. Plasma was collected from patients with stage I breast cancer or benign breast lesions. Low abundance proteins were enriched using a bead-based combinatorial library of hexapeptides. This resulted in the identification of 397 proteins, 22% of which are novel plasma proteins. Twenty-three differentially expressed plasma proteins were identified, demonstrating the effectiveness of the described protocol and defining a set of candidate biomarkers to be validated in independent samples. This work can be used as the basis for the design of properly powered investigations of plasma protein expression for biomarker discovery in larger cohorts of patients with complex disease.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/química , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Cromatografia Líquida/métodos , Técnicas de Química Combinatória/métodos , Diagnóstico Precoce , Feminino , Humanos , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Espectrometria de Massas em Tandem/métodos
14.
Cancer Res ; 70(24): 10464-73, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159656

RESUMO

The role of mammary epithelial cell (MEC) NF-κB in tumor progression in vivo is unknown, as murine NF-κB components and kinases either are required for murine survival or interfere with normal mammary gland development. As NF-κB inhibitors block both tumor-associated macrophages (TAM) and MEC NF-κB, the importance of MEC NF-κB to tumor progression in vivo remained to be determined. Herein, an MEC-targeted inducible transgenic inhibitor of NF-κB (IκBαSR) was developed in ErbB2 mammary oncomice. Inducible suppression of NF-κB in the adult mammary epithelium delayed the onset and number of new tumors. Within similar sized breast tumors, TAM and tumor neoangiogenesis was reduced. Coculture experiments demonstrated MEC NF-κB enhanced TAM recruitment. Genome-wide expression and proteomic analysis showed that IκBαSR inhibited tumor stem cell pathways. IκBαSR inhibited breast tumor stem cell markers in transgenic tumors, reduced stem cell expansion in vitro, and repressed expression of Nanog and Sox2 in vivo and in vitro. MEC NF-κB contributes to mammary tumorigenesis. As we show that NF-κB contributes to expansion of breast tumor stem cells and heterotypic signals that enhance TAM and vasculogenesis, these processes may contribute to NF-κB-dependent mammary tumorigenesis.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Mamárias Experimentais/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Proteínas I-kappa B/biossíntese , Proteínas I-kappa B/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/biossíntese , Transfecção
15.
Proc Natl Acad Sci U S A ; 107(18): 8231-6, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20406904

RESUMO

microRNAs are thought to regulate tumor progression and invasion via direct interaction with target genes within cells. Here the microRNA17/20 cluster is shown to govern cellular migration and invasion of nearby cells via heterotypic secreted signals. microRNA17/20 abundance is reduced in highly invasive breast cancer cell lines and node-positive breast cancer specimens. Cell-conditioned medium from microRNA17/20-overexpressing noninvasive breast cancer cell MCF7 was sufficient to inhibit MDA-MB-231 cell migration and invasion through inhibiting secretion of a subset of cytokines, and suppressing plasminogen activation via inhibition of the secreted plasminogen activators (cytokeratin 8 and alpha-enolase). microRNA17/20 directly repressed IL-8 by targeting its 3' UTR, and inhibited cytokeratin 8 via the cell cycle control protein cyclin D1. At variance with prior studies, these results demonstrated a unique mechanism of how the altered microRNA17/20 expression regulates cellular secretion and tumor microenvironment to control migration and invasion of neighboring cells in breast cancer. These findings not only reveal an antiinvasive function of miR-17/20 in breast cancer, but also identify a heterotypic secreted signal that mediates the microRNA regulation of tumor metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Plasminogênio/metabolismo , Ligação Proteica
16.
Proc Natl Acad Sci U S A ; 107(15): 6864-9, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351289

RESUMO

The Drosophila Dachshund (Dac) gene, cloned as a dominant inhibitor of the hyperactive growth factor mutant ellipse, encodes a key component of the retinal determination gene network that governs cell fate. Herein, cyclic amplification and selection of targets identified a DACH1 DNA-binding sequence that resembles the FOX (Forkhead box-containing protein) binding site. Genome-wide in silico promoter analysis of DACH1 binding sites identified gene clusters populating cellular pathways associated with the cell cycle and growth factor signaling. ChIP coupled with high-throughput sequencing mapped DACH1 binding sites to corresponding gene clusters predicted in silico and identified as weight matrix resembling the cyclic amplification and selection of targets-defined sequence. DACH1 antagonized FOXM1 target gene expression, promoter occupancy in the context of local chromatin, and contact-independent growth. Attenuation of FOX function by the cell fate determination pathway has broad implications given the diverse role of FOX proteins in cellular biology and tumorigenesis.


Assuntos
Proteínas do Olho/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem da Célula , Cromatina/química , Biologia Computacional/métodos , DNA/química , Proteína Forkhead Box M1 , Regulação da Expressão Gênica , Genoma , Células HeLa , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
17.
Cancer Res ; 70(5): 2105-14, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20179208

RESUMO

Cyclin D1 belongs to a family of proteins that regulate progression through the G1-S phase of the cell cycle by binding to cyclin-dependent kinase (cdk)-4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon, and prostate, overexpress the cyclin D1 gene. However, the correlation of cyclin D1 overexpression with E2F target gene regulation or of cdk-dependent cyclin D1 activity with tumor development has not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A (FLNa), a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. FLNa has also been associated with a variety of cancers including lung cancer, prostate cancer, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. Using mass spectrometry, we find that cyclin D1 and FLNa coimmunoprecipitate and that lower levels of cyclin D1 are associated with decreased phosphorylation of FLNa at Ser2152 and Ser1459. We also identify many proteins related to cytoskeletal function, biomolecular synthesis, organelle biogenesis, and calcium regulation whose levels of expression change concomitant with decreased cell motility induced by decreased cyclin D1 and cyclin D1-cdk4/6 activities.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Proteínas Contráteis/metabolismo , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Filaminas , Humanos , Dados de Sequência Molecular , Invasividade Neoplásica , Fosfoproteínas/metabolismo
18.
J Biol Chem ; 285(13): 9792-9802, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20093358

RESUMO

Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Nitrilas/farmacologia , Sesquiterpenos/farmacologia , Sulfonas/farmacologia , Animais , Células da Medula Óssea/metabolismo , Caspase 1/metabolismo , Morte Celular , Humanos , Immunoblotting , L-Lactato Desidrogenase/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Sulfonas/química
19.
Am J Pathol ; 174(3): 746-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234134

RESUMO

Recently, we reported that human breast cancer-associated fibroblasts show functional inactivation of the retinoblastoma (RB) tumor suppressor and down-regulation of caveolin-1 (Cav-1) protein expression. However, it remains unknown whether loss of Cav-1 is sufficient to confer functional RB inactivation in mammary fibroblasts. To establish a direct cause-and-effect relationship, mammary stromal fibroblasts (MSFs) were prepared from Cav-1(-/-) null mice and subjected to phenotypic analysis. Here, we provide evidence that Cav-1(-/-) MSFs share many characteristics with human cancer-associated fibroblasts. The Cav-1(-/-) MSF transcriptome significantly overlaps with human cancer-associated fibroblasts; both show a nearly identical profile of RB/E2F-regulated genes that are up-regulated, which is consistent with RB inactivation. This Cav-1(-/-) MSF gene signature is predictive of poor clinical outcome in breast cancer patients treated with tamoxifen. Consistent with these findings, Cav-1(-/-) MSFs show RB hyperphosphorylation and the up-regulation of estrogen receptor co-activator genes. We also evaluated the paracrine effects of "conditioned media" prepared from Cav-1(-/-) MSFs on wild-type mammary epithelia. Our results indicate that Cav-1(-/-) MSF "conditioned media" is sufficient to induce an epithelial-mesenchymal transition, indicative of an invasive phenotype. Proteomic analysis of this "conditioned media" reveals increased levels of proliferative/angiogenic growth factors. Consistent with these findings, Cav-1(-/-) MSFs are able to undergo endothelial-like transdifferentiation. Thus, these results have important implications for understanding the role of cancer-associated fibroblasts and RB inactivation in promoting tumor angiogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caveolina 1/deficiência , Caveolina 1/genética , Fibroblastos/patologia , Células Estromais/patologia , Western Blotting , Mama/citologia , Mama/fisiologia , Neoplasias da Mama/mortalidade , Técnicas de Cultura de Células , Divisão Celular , Progressão da Doença , Intervalo Livre de Doença , Células Epiteliais/citologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Neoplásico/genética , Células Estromais/citologia , Células Estromais/fisiologia , Análise de Sobrevida
20.
Am J Pathol ; 174(2): 613-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19164602

RESUMO

Here, we show that functional loss of a single gene is sufficient to confer constitutive milk protein production and protection against mammary tumor formation. Caveolin-3 (Cav-3), a muscle-specific caveolin-related gene, is highly expressed in muscle cells. We demonstrate that Cav-3 is also expressed in myoepithelial cells within the mammary gland. To determine whether genetic ablation of Cav-3 expression affects adult mammary gland development, we studied the phenotype(s) of Cav-3(-/-)-null mice. Interestingly, Cav-3(-/-) virgin mammary glands developed lobulo-alveolar hyperplasia, akin to the changes normally observed during pregnancy and lactation. Genome-wide expression profiling revealed up-regulation of gene transcripts associated with pregnancy/lactation, mammary stem cells, and human breast cancers, consistent with a constitutive lactogenic phenotype. Expression levels of three key transcriptional regulators of lactation, namely Elf5, Stat5a, and c-Myc, were also significantly elevated. Experiments with pregnant mice directly showed that Cav-3(-/-) mice underwent precocious lactation. Finally, using orthotopic tumor cell implantation, we demonstrated that virgin Cav-3(-/-) mice were dramatically protected against mammary tumor formation. Thus, Cav-3(-/-) mice are a novel preclinical model to study the protective effects of a lactogenic microenvironment on mammary tumor onset and progression. Our current studies have broad implications for using the lactogenic microenvironment as a paradigm to discover new therapies for the prevention and/or treatment of human breast cancers.


Assuntos
Caveolina 3/genética , Caveolina 3/metabolismo , Expressão Gênica , Lactação/fisiologia , Neoplasias Mamárias Experimentais/genética , Animais , Movimento Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Mutantes , Leite Humano/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...