Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466431

RESUMO

This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4-6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices.

2.
Sensors (Basel) ; 19(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349727

RESUMO

Bluetooth Low Energy (BLE) based Wireless Indoor Localization System (WILS) with high localization accuracy and high localization precision is a key requirement in enabling the Internet of Things (IoT) in today's applications. In this paper, we investigated the effect of BLE signal variations on indoor localization caused by the change in BLE transmission power levels. This issue is not often discussed as most of the works on localization algorithms use the highest power levels but has important practical implications for energy efficiency, e.g., if a designer would like to trade-off localization performance and node lifetime. To analyze the impact, we used the established trilateration based localization model with two methods i.e., Centroid Approximation (CA) and Minimum Mean Square Error (MMSE). We observed that trilateration based localization with MMSE method outperforms the CA method. We further investigated the use of two filters i.e., Low Pass Filter (LPF) and Kalman Filter (KF) and evaluated their effects in terms of mitigating the random variations from BLE signal. In comparison to non-filter based approach, we observed a great improvement in localization accuracy and localization precision with a filter-based approach. Furthermore, in comparison to LPF based trilateration localization with CA, the performance of a KF based trilateration localization with MMSE is far better. An average of 1 m improvement in localization accuracy and approximately 50% improvement in localization precision is observed by using KF in trilateration based localization model with the MMSE method. In conclusion, with KF in trilateration based localization model with MMSE method effectively eliminates random variations in BLE RSS with multiple transmission power levels and thus results in a BLE based WILS with high accuracy and high precision.

3.
Sensors (Basel) ; 16(6)2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27322263

RESUMO

Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...