Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(11): 2105-2113, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776205

RESUMO

Sensitive detection of pathogens in livestock farms is an integral part of the One Health Action Plan of the European Union (EU). Ensuring this requires on-site testing devices that are compatible with complex matrices such as primary production samples. Among all, faeces are considered the most challenging matrix type that makes it difficult to identify pathogens because of complexity in sample preparation for molecular testing. We have developed a loop-mediated isothermal amplification (LAMP) based veterinary point-of-care (POC) device (VETPOD) and adapted it to detect Salmonella enterica in primary production samples. Three different sampling methods (semi-wet chicken faeces, boot socks collection and dust samples from poultry shed) were iteratively tested to assess their nature of complexity and possibility for adapting them as suitable sampling methods for on-site testing. During the study, the sample preparation method that included a two-step centrifugation combined with washing of the enriched Salmonella cells was found crucial in eliminating amplification inhibitors originating from the faecal matrices. A total of 90 samples were tested that included 60 samples for sensitivity study and 30 samples for relative level of detection (RLOD, a level of detection in comparison to ISO 6579:1 reference method). Overall, the VETPOD had a sensitivity of 90%, 84.62% and 81.82% for boot sock, faecal and dust samples, respectively. The RLOD was 2.23 CFU/25 g which was found to be 1.33 times higher than the ISO 6579:1. Performing with an excellent agreement with ISO 6579:1, the VETPOD proved as a promising alternative to detect Salmonella spp. in primary production and animal husbandry samples.


Assuntos
Salmonella enterica , Animais , Salmonella enterica/genética , Salmonella/genética , Galinhas , Poeira , DNA , Sensibilidade e Especificidade
2.
Anal Chem ; 95(34): 12656-12663, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37585497

RESUMO

Accurate and rapid detection of pathogens in foods of animal origin has been a critical part of the One Health Action Plan of the European Union (EU). Biosensors have the potential in bringing required technologies to accomplish this on the field, wherein loop-mediated isothermal amplification (LAMP) and lab-on-a-chip have proven to be ideal. We have developed a LAMP-based point-of-care (POC) device, the VETPOD, as a solution to the contemporary challenges in the rapid detection of Salmonella spp. The core technology in the VETPOD is a ready-to-use cartridge that included an injection-molded polymer chip with pyramid-shaped optical structures embedded within the chip. These pyramid-shaped optical structures direct the incident light, due to total internal reflection (TIR), through the reaction chambers to the phototransistor. The VETPOD was validated against the ISO 6579-1 reference method. A total of 310 samples were tested that included 180 Salmonella spiked samples in 6 different meat categories and 130 strains to determine the specificity. The overall results were satisfactory, wherein the VETPOD had an acceptable sensitivity (96.51%) compared to the reference (98.81%) and near perfect agreement with ISO 6579-1 with an overall Cohen's kappa of 0.94. The relative level of detection (RLOD) for the VETPOD was 1.38 CFU/25 g that was found to be 1.17 times higher than the reference. The VETPOD showed 98% precision for inclusivity and 100% precision for the exclusivity samples. The VETPOD proved as a useful alternative to detect Salmonella spp. that can be adaptable to a broader spectrum of pathogens in future.


Assuntos
Produtos da Carne , Salmonella enterica , Animais , Salmonella enterica/genética , Sistemas Automatizados de Assistência Junto ao Leito , Salmonella/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Carne , Sensibilidade e Especificidade , Microbiologia de Alimentos
3.
ACS Sens ; 7(11): 3343-3351, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284082

RESUMO

Adaptations of new generation molecular techniques for multiplexed detection of pathogens are gaining interest in the field of point-of-care (POC) industry and onsite testing. Loop-mediated isothermal amplification (LAMP), an advanced molecular amplification technique, has proven promising due to its unique features that suits ideal for POC applications. However, application of LAMP for multiplexed detection of pathogens remains challenging because of the difficulty in the identification of specific LAMP amplicons that does not have a well-definite molecular size. In this study, we developed a solid-phase loop-mediated isothermal amplification (SP-LAMP) technique to address the challenge. Integration of LAMP with the supercritical angle fluorescence (SAF) micro-optic structures as a solid support (SS) in an array format enabled spatial separation of LAMP amplicons in a multiplexed configuration. Important parameters such as length of the SS primers, length of the primer-binding region, the effect of surface density of immobilized SS primers, and cross-reactivity among the primers of different targets were iteratively tested and optimized. With the combination of SP-LAMP and SAF techniques, it was possible to detect multiple pathogens that include Salmonella spp, Campylobater spp., Campylobacter coli, Campylobacter jejuni, avian influenza virus (AIV), and pan avian internal control (IC) under singleplex conditions. The multiplexing capacity of the SP-LAMP was demonstrated using AIV and IC with promising results. The success of SP-LAMP has opened a promising direction toward the development of a multiplex POC system for rapid detection of multiple pathogens.


Assuntos
Vírus da Influenza A , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Salmonella/genética , Vírus da Influenza A/genética
4.
Front Bioeng Biotechnol ; 10: 917573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992344

RESUMO

The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The system is built based on the Arduino platform compatible with commercially available open-source hardware-software and off-the-shelf electronic components. The fPOC system comprises of three main components: 1) an instrument with integrated heaters, 2) optical detection components, and 3) an injection-molded polymeric cartridge. The system was tested and experimentally proved to be able to use for fast detection of the SARS-CoV-2 virus in real-time in less than 30 min. Preliminary results of testing the performance of the fPOC revealed that the fPOC could detect the SARS-CoV-2 virus at a limit of detection (LOD50%) at two to three copies/microliter (15.36 copies/reaction), which was comparable to reactions run on a standard commercial thermocycler. The performance of the fPOC was evaluated with 12 SARS-CoV-2 clinical throat swab samples that included seven positive and five negative samples, as confirmed by reverse transcription-polymerase chain reaction. The fPOC showed 100% agreement with the commercial thermocycler. This simple design of the fPOC system demonstrates the potential to greatly enhance the practical applicability to develop a totally integrated point-of-care system for rapid on-site screening of the SARS-CoV-2 virus in the management of the pandemic.

5.
Front Cell Infect Microbiol ; 12: 856553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521217

RESUMO

Loop-mediated isothermal amplification (LAMP) is being used as a robust rapid diagnostic tool to prevent the transmission of infectious diseases. However, carryover contamination of LAMP-amplified products originating from previous tests has been a problem in LAMP-based bio-analytical assays. In this study, we developed a Cod-uracil-DNA-glycosylase real-time reverse transcriptase LAMP assay (Cod-UNG-rRT-LAMP) for the elimination of carryover contamination and the rapid detection of SARS-CoV-2 in point-of-care (POC) testing. Using the Cod-UNG-rRT-LAMP assay, the SARS-CoV-2 virus could be detected as low as 2 copies/µl (8 copies/reaction) within 45 min of amplification and 2.63 ± 0.17 pg (equivalent to 2.296 × 109 copies) of contaminants per reaction could be eliminated. Analysis of clinical SARS-CoV-2 samples using the Cod-UNG-rRT-LAMP assay showed an excellent agreement with a relative accuracy of 98.2%, sensitivity of 97.1%, and specificity of 95.2% in comparison to rRT-PCR. The results obtained in this study clearly demonstrate the feasibility of the use of the Cod-UNG-rRT-LAMP assay for applications toward the POC diagnosis of SARS-CoV-2 and on-site testing of other pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Testes Imediatos , RNA Viral/análise , RNA Viral/genética , DNA Polimerase Dirigida por RNA , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
Front Cell Infect Microbiol ; 11: 652048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954120

RESUMO

Avian influenza virus (AIV) outbreaks occur frequently worldwide, causing a potential public health risk and great economic losses to poultry industries. Considering the high mutation rate and frequent genetic reassortment between segments in the genome of AIVs, emerging new strains are a real threat that may infect and spread through the human population, causing a pandemic. Therefore, rapid AIV diagnostic tests are essential tools for surveillance and assessing virus spreading. Real-time reverse transcription PCR (rRT-PCR), targeting the matrix gene, is the main official standard test for AIV detection, but the method requires well-equipped laboratories. Reverse transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has been reported as a rapid method and an alternative to PCR in pathogen detection. The high mutation rate in the AIV genome increases the risk of false negative in nucleic acid amplification methods for detection, such as PCR and LAMP, due to possible mismatched priming. In this study, we analyzed 800 matrix gene sequences of newly isolated AIV in the EU and designed a highly efficient LAMP primer set that covers all AIV subtypes. The designed LAMP primer set was optimized in real-time RT-LAMP (rRT-LAMP) assay. The rRT-LAMP assay detected AIV samples belonging to nine various subtypes with the specificity and sensitivity comparable to the official standard rRT-PCR assay. Further, a two-color visual detection RT-LAMP assay protocol was adapted with the aim to develop on-site diagnostic tests. The on-site testing successfully detected spiked AIV in birds oropharyngeal and cloacal swabs samples at a concentration as low as 100.8 EID50 per reaction within 30 minutes including sample preparation. The results revealed a potential of this newly developed rRT-LAMP assay to detect AIV in complex samples using a simple heat treatment step without the need for RNA extraction.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Vírus da Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Transcrição Reversa , Sensibilidade e Especificidade
7.
Front Microbiol ; 10: 2443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708907

RESUMO

Campylobacteriosis is one of the most common foodborne diseases worldwide. Two Campylobacter species - C. jejuni and C. coli in poultry and poultry products are considered to be the main source of human campylobacteriosis. Therefore, studying Campylobacter status in poultry flocks is needed to prevent transmission of disease and reduce human risk, health cost, and economic losses. In this study, we adapted and used a Loop-Mediated Isothermal Amplification (LAMP) assay for specific, sensitive, simple and cost-effective rapid detection of C. jejuni and C. coli in the poultry production chain. Amplified LAMP products were detected using a small, low-cost portable commercial blue LED transilluminator and a direct visual detection strategy was demonstrated. By using optimized conditions for amplification a limit of detection (LOD) of 50 CFU/ml was achieved for testing of C. jejuni and C. coli in spiked chicken feces without enrichment. The method took 60-70 min from receiving the samples to the final results (including 30 min for amplification). The optimized LAMP showed a relative accuracy of 98.4%, a specificity of 97.9%, and a sensitivity of 100% in comparison to real-time PCR method. Cohen's kappa index also showed an excellent agreement (0.94) between the two methods. The results showed that the method is specific, sensitive and is suitable to develop for rapid detection of Campylobacter spp. at poultry production.

8.
Front Microbiol ; 10: 2234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681184

RESUMO

LAMP has received great interest and is widely utilized in life sciences for nucleic acid analysis. To monitor a real-time LAMP assay, a fluorescence DNA dye is an indispensable component and therefore the selection of a suitable dye for real-time LAMP is a need. To aid this selection, we investigated the inhibition effects of twenty-three DNA dyes on real-time LAMP. Threshold time (Tt) values of each real-time LAMP were determined and used as an indicator of the inhibition effect. Based on the inhibition effects, the dyes were classified into four groups: (1) non-inhibition effect, (2) medium inhibition effect, (3) high inhibition effect, and (4) very high inhibition effect. The signal to noise ratio (SNR) and the limit of detection (LOD) of the dyes in groups 1, 2, and 3 were further investigated, and possible inhibition mechanisms of the DNA dyes on the real-time LAMP are suggested and discussed. Furthermore, a comparison of SYTO 9 in different LAMP reactions and different systems is presented. Of the 23 dyes tested, SYTO 9, SYTO 82, SYTO 16, SYTO 13, and Miami Yellow were the best dyes with no inhibitory effect, low LOD and high SNR in the real-time LAMP reactions. The present classification of the dyes will simplify the selection of fluorescence dye for real-time LAMP assays in point of care setting.

9.
Mol Cell Probes ; 32: 24-32, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27871797

RESUMO

Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection.


Assuntos
Reação em Cadeia da Polimerase/métodos , Carne Vermelha/microbiologia , Salmonella/classificação , Salmonella/isolamento & purificação , Sorotipagem/métodos , Animais , Contaminação de Alimentos , Limite de Detecção , Sensibilidade e Especificidade
10.
Lab Chip ; 15(8): 1898-904, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25715949

RESUMO

Foodborne disease is a major public health threat worldwide. Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture or molecular-based methods are time consuming and usually take a few hours to days to complete. In response to the demand for rapid on line or on site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic bead-based sample preparation and loop-mediated isothermal amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time, will greatly enhance the practical applicability of the LOC system for rapid on-site screening of Salmonella for applications in food safety control, environmental surveillance, and clinical diagnostics.


Assuntos
Métodos Analíticos de Preparação de Amostras/instrumentação , Microbiologia de Alimentos , Dispositivos Lab-On-A-Chip , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Integração de Sistemas , Corantes/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Substâncias Intercalantes/farmacologia , Limite de Detecção , Imãs/química , Microesferas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...