Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(3): e0152310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031105

RESUMO

INTRODUCTION: Determining the optimal time to vaccinate is important for influenza vaccination programmes. Here, we assessed the temporal characteristics of influenza epidemics in the Northern and Southern hemispheres and in the tropics, and discuss their implications for vaccination programmes. METHODS: This was a retrospective analysis of surveillance data between 2000 and 2014 from the Global Influenza B Study database. The seasonal peak of influenza was defined as the week with the most reported cases (overall, A, and B) in the season. The duration of seasonal activity was assessed using the maximum proportion of influenza cases during three consecutive months and the minimum number of months with ≥80% of cases in the season. We also assessed whether co-circulation of A and B virus types affected the duration of influenza epidemics. RESULTS: 212 influenza seasons and 571,907 cases were included from 30 countries. In tropical countries, the seasonal influenza activity lasted longer and the peaks of influenza A and B coincided less frequently than in temperate countries. Temporal characteristics of influenza epidemics were heterogeneous in the tropics, with distinct seasonal epidemics observed only in some countries. Seasons with co-circulation of influenza A and B were longer than influenza A seasons, especially in the tropics. DISCUSSION: Our findings show that influenza seasonality is less well defined in the tropics than in temperate regions. This has important implications for vaccination programmes in these countries. High-quality influenza surveillance systems are needed in the tropics to enable decisions about when to vaccinate.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/prevenção & controle , Vacinação , Humanos , Influenza Humana/epidemiologia , Estudos Retrospectivos , Estações do Ano , Clima Tropical
2.
J Infect Dis ; 207(2): 262-71, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23042757

RESUMO

BACKGROUND: The pathogenesis of influenza A virus subtype H5N1 (hereafter, "H5N1") infection in humans is not completely understood, although hypercytokinemia is thought to play a role. We previously reported that most H5N1 viruses induce high cytokine responses in human macrophages, whereas some H5N1 viruses induce only a low level of cytokine production similar to that induced by seasonal viruses. METHODS: To identify the viral molecular determinants for cytokine induction of H5N1 viruses in human macrophages, we generated a series of reassortant viruses between the high cytokine inducer A/Vietnam/UT3028II/03 clone 2 (VN3028IIcl2) and the low inducer A/Indonesia/UT3006/05 (IDN3006) and evaluated cytokine expression in human macrophages. RESULTS: Viruses possessing the acidic polymerase (PA) gene of VN3028IIcl2 exhibited high levels of hypercytokinemia-related cytokine expression in human macrophages, compared with IDN3006, but showed no substantial differences in viral growth in these cells. Further, the PA gene of VN3028IIcl2 conferred enhanced virulence in mice. CONCLUSIONS: These results demonstrate that the PA gene of VN3028IIcl2 affects cytokine production in human macrophages and virulence in mice. These findings provide new insights into the cytokine-mediated pathogenesis of H5N1 infection in humans.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/virologia , Macrófagos/imunologia , Infecções por Orthomyxoviridae/veterinária , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Citocinas/biossíntese , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Células HEK293 , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/imunologia , Macrófagos/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Virulência/genética
3.
FEBS Open Bio ; 2: 261-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23650608

RESUMO

Avian influenza A viruses (IAVs) and human 1918, 1957, and 1968 pandemic IAVs all have neuraminidases (NAs) that are stable at low pH sialidase activity, yet most human epidemic IAVs do not. We examined the pH stability of H5N1 highly pathogenic avian IAV (HPAI) NAs and identified amino acids responsible for conferring stability at low pH. We found that, unlike other avian viruses, most H5N1 IAVs isolated since 2003 had NAs that were unstable at low pH, similar to human epidemic IAVs. These H5N1 viruses are thus already human virus-like and, therefore, have the frequent infections of humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...