Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Electrocardiol ; 83: 41-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306814

RESUMO

Machine learning is poised to revolutionize medicine with algorithms that spot cardiac arrhythmia. An automated diagnostic approach can boost the efficacy of diagnosing life-threatening arrhythmia disorders in routine medical procedures. In this paper, we propose a deep learning network CLINet for ECG signal classification. Our network uses convolution, LSTM and involution layers to bring their unique advantages together. For both convolution and involution layers, we use multiple, large size kernels for multi-scale representation learning. CLINet does not require complicated pre-processing and can handle electrocardiograms of any length. Our network achieves 99.90% accuracy on the ICCAD dataset and 99.94% accuracy on the MIT-BIH dataset. With only 297 K parameters, our model can be easily embedded in smart wearable devices. The source code of CLINet is available at https://github.com/CandleLabAI/CLINet-ECG-Classification-2024.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Algoritmos , Software , Arritmias Cardíacas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...