Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(27): 10308-10349, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994420

RESUMO

This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).

2.
Inorg Chem ; 63(24): 11063-11078, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38814816

RESUMO

In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.


Assuntos
Domínio Catalítico , Cobre , Teoria da Densidade Funcional , Oxigenases de Função Mista , Serratia marcescens , Cobre/química , Cobre/metabolismo , Serratia marcescens/enzimologia , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Oxirredução
3.
JACS Au ; 4(5): 1966-1974, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818064

RESUMO

Using light to unveil unexplored reactivities of earth-abundant metal-oxygen intermediates is a formidable challenge, given the already remarkable oxidation ability of these species in the ground state. However, the light-induced reactivity of Cu-O2 intermediates still remains unexplored, due to the photoejection of O2 under irradiation. Herein, we describe a photoinduced reactivity switch of bioinspired O2-activating CuI complexes, based on the archetypal tris(2-pyridyl-methyl)amine (TPA) ligand. This report represents a key precedent for light-induced reactivity switch in Cu-O2 chemistry, obtained by positioning C-H substrates in close proximity of the active site. Open and caged CuI complexes displaying an internal aryl ether substrate were evaluated. Under light, a Cu-O2 mediated reaction takes place that induces a selective conversion of the internal aryl ether unit to a phenolate-CH2- moiety with excellent yields. This light-induced transformation displays high selectivity and allows easy postfunctionalization of TPA-based ligands for straightforward preparation of challenging heteroleptic structures. In the absence of light, O2 activation results in the standard oxidative cleavage of the covalently attached substrate. A reaction mechanism that supports a monomeric cupric-superoxide-dependent reactivity promoted by light is proposed on the basis of reactivity studies combined with (TD-) DFT calculations.

4.
Chembiochem ; 25(12): e202400235, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38642076

RESUMO

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Fenilalanina , Humanos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/síntese química , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Domínio Catalítico , Estrutura Molecular
5.
Eur J Med Chem ; 248: 115090, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634457

RESUMO

In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.


Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Domínio Catalítico , Aminoácidos , Melaninas , Mamíferos/metabolismo
6.
Chemistry ; 28(66): e202202206, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36044615

RESUMO

The stereoselective copper-mediated hydroxylation of intramolecular C-H bonds from tridentate ligands is reinvestigated using DFT calculations. The computational study aims at deciphering the mechanism of C-H hydroxylation obtained after reaction of Cu(I) precursors with dioxygen, using ligands bearing either activated (L1 ) or non-activated (L2 ) C-H bonds. Configurational analysis allows rationalization of the experimentally observed regio- and stereoselectivity. The computed mechanism involves the formation of a side-on peroxide species (P) in equilibrium with the key intermediate bis-(µ-oxo) isomer (O) responsible for the C-H activation step. The P/O equilibrium yields the same activation barrier for the two complexes. However, the main difference between the two model complexes is observed during the C-H activation step, where the complex bearing the non-activated C-H bonds yields a higher energy barrier, accounting for the experimental lack of reactivity of this complex under those conditions.


Assuntos
Cobre , Oxigênio , Cobre/química , Ligantes , Oxigênio/química , Peróxidos/química
7.
J Org Chem ; 86(3): 2210-2223, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491451

RESUMO

3,4-Dimercaptophenylalanines and 2,3-dimercaptophenylalanines have been synthesized for the first time by nucleophilic substitution of a protected aminomalonate on 3,4- and 2,3-dimercaptobenzyl bromide derivatives. The dithiol functions were protected as thioketals, and the key precursors, diphenylthioketal-protected dimercaptobenzyl bromides, were synthesized via two distinct routes from either dihydroxy benzoates or toluene-3,4-dithiol. Racemic mixtures of the fully protected amino acids were separated by chiral HPLC into the corresponding enantiomers. The absolute configuration of both 3,4- and 2,3-analogues could be assigned based on X-ray crystallography and VCD/DFT measurements. Thioketal groups were deprotected upon reaction with mercury oxide and aqueous tetrafluoroboric acid followed by treatment with H2S gas under an argon atmosphere to obtain the corresponding dimercapto amino acids. The optically pure l-Fmoc-protected 3,4-analogue (S- enantiomer) was successfully incorporated into a decapeptide using standard solid-phase peptide synthesis. Therefore, dithiolene-functionalized peptides are now accessible from a simple synthetic procedure, and this should afford new molecular tools for research into the catalysis, diagnostic, and nanotechnology fields.


Assuntos
Peptídeos , Técnicas de Síntese em Fase Sólida , Aminoácidos , Catálise , Estereoisomerismo
8.
Chembiochem ; 22(3): 443-459, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32852088

RESUMO

The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.


Assuntos
Cicloexenos/síntese química , Albumina Sérica/química , Animais , Reação de Cicloadição , Cicloexenos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Suínos
9.
Chemistry ; 27(13): 4384-4393, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284485

RESUMO

Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized. Their inhibition activities were evaluated on purified tyrosinases from different sources (mushroom, bacterial, and human) as well as on melanin production by lysates from the human melanoma MNT-1 cell line. Results showed significant enhancement of the inhibitory effects compared with the parent compounds, in particular for HOPNO-TSC. To elucidate the interaction mode with the dicopper(II) active site, binding studies with a tyrosinase bio-inspired model of the dicopper(II) center were investigated. The structure of the isolated adduct between one ditopic inhibitor (KA-TSC) and the model complex reveals that the binding to a dicopper center can occur with both chelating sites. Computational studies on model complexes and docking studies on enzymes led to the identification of KA and HOPNO moieties as interacting groups with the dicopper active site.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Quelantes , Inibidores Enzimáticos/farmacologia , Humanos , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
10.
Chem Commun (Camb) ; 56(75): 11106-11109, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32812950

RESUMO

We report the synthesis and the characterization of a trinuclear nickel complex. Solid state and solution studies using X-ray diffraction, NMR and UV-vis spectroscopy highlight the square planar geometries around the metal centers and an all-sulfur coordination sphere. It exhibits significant electrocatalytic activity for hydrogen evolution in DMF using Et3NHCl as the proton source. DFT studies suggest that sulfur atoms act as proton relay, as proposed in [NiFe] hydrogenases.

11.
Dalton Trans ; 49(16): 5064-5073, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159540

RESUMO

This work reports on the synthesis and characterization of a series of mononuclear thiosemicarbazone nickel complexes that display significant catalytic activity for hydrogen production in DMF using trifluoroacetic acid as the proton source. The ligand framework was chemically modified by varying the electron-donating abilities of the para substituents on the phenyl rings, which was expected to impact the capability of the resulting complexes to reduce protons into hydrogen. Over the four nickel complexes that were obtained, the one with the thiomethyl substituent, NiSCH3, was found to overtake the catalytic performances of the parent complex NiOCH3 featuring lower overpotential values and similar maximum turnover frequencies. These results confirm the electronic effects of the ligand on HER when using thiosemicarbazone nickel complexes and support that chemical modifications can tune the catalytic performances of such systems.

12.
FEBS J ; 287(15): 3298-3314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31903721

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes involved in the degradation of recalcitrant polysaccharides such as cellulose or chitin. LPMOs act in synergy with glycoside hydrolases such as cellulases and chitinases by oxidatively cleaving a number of glycosidic bonds at the surface of their crystalline substrate(s). Besides their role in biomass degradation, some bacterial LPMOs have been found to be virulence factors in some human and insect pathogens. Photorhabdus luminescens is a nematode symbiont bacterium that is pathogenic to a wide range of insects. A single gene encoding a LPMO is found in its genome. In this work, we report the characterization of this LPMO, referred to as PlAA10. Surprisingly, PlAA10 lacks the conserved alanine residue (substituted by an isoleucine) found in the second coordination sphere of the copper-active site in bacterial LPMOs. PlAA10 was found to be catalytically active on both α- and ß-chitin, and exhibits a C1-oxidation regiospecificity, similarly to other chitin-active LPMOs. The 1.6 Å X-ray crystal structure confirmed that PlAA10 adopts the canonical immunoglobulin-like fold typical for LPMOs. The geometry of the copper-active site is not affected by the nearby isoleucine, as also supported by electron paramagnetic resonance. Nevertheless, the bulkier side chain of isoleucine protrudes from the substrate-binding surface. A bioinformatic study on putative bacterial LPMOs unveiled that they exhibit some variability at the conserved active-site alanine position with a substitution in about 15% of all sequences analyzed. DATABASE: Structural data (atomic coordinates and structure factors) reported for PlAA10 are available in the Protein Data Bank under accession number 6T5Z. ENZYMES: PlAA10, EC1.14.99.53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Photorhabdus/enzimologia , Polissacarídeos/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutação , Oxirredução , Polissacarídeos/química , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
13.
Angew Chem Int Ed Engl ; 58(41): 14605-14609, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31487113

RESUMO

In the context of developing ecofriendly chemistry, artificial enzymes are now considered as promising tools for synthesis. They are prepared in particular with the aim to catalyze reactions that are rarely, if ever, catalyzed by natural enzymes. We discovered that 1-aminocyclopropane carboxylic acid oxidase reconstituted with CuII served as an efficient artificial Diels-Alderase. The kinetic parameters of the catalysis of the cycloaddition of cyclopentadiene and 2-azachalcone were determined (KM =230 µm, kapp =3 h-1 ), which gave access to reaction conditions that provided quantitative yield and >99 % ee of the (1S,2R,3R,4R) product isomer. This unprecedented performance was rationalized by molecular modeling as only one docking pose of 2-azachalcone was possible in the active site of the enzyme and this was the one that leads to the (1S,2R,3R,4R) product isomer.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Cobre/química , Domínio Catalítico , Química Verde , Modelos Moleculares , Conformação Proteica
14.
Inorg Chem ; 57(19): 12364-12375, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226767

RESUMO

A (µ-hydroxido, µ-phenoxido)CuIICuII complex 1 has been synthesized using an unsymmetrical ligand bearing an N, N-bis(2-pyridyl)methylamine (BPA) moiety coordinating one copper and a dianionic bis-amide moiety coordinating the other copper(II) ion. Electrochemical mono-oxidation of the complex in DMF occurs reversibly at 213 K at E1/2 = 0.12 V vs Fc+/Fc through a metal-centered process. The resulting species (complex 1+) is only stable at low temperature and has been spectroscopically characterized by UV-vis-NIR cryo-spectroelectrochemical and EPR methods. DFT and TD-DFT calculations, consistent with experimental data, support the formation of a CuIICuIII phenoxido-hydroxido complex. Low-temperature chemical oxidation of 1 by NOSbF6 yields a tetranuclear complex 2(SbF6)(NO2) which displays two binuclear CuIICuII subunits. The X-ray crystal structure of 2(SbF6)(NO2) evidences that the nitrogen of the terminal amide group is protonated and the coordination of the amide occurs via the O atom. The bis-amide moiety appears to be a non-innocent proton acceptor along the redox process. Alternatively, protonation of complex 1 leads to the complex 2(ClO4)2, as evidenced by X-ray crystallography, cyclic voltammetry, and 1H NMR.

15.
Chemistry ; 24(35): 8779-8786, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29637648

RESUMO

The synthesis and characterization of a dinuclear bis(thiosemicarbazone) cobalt complex [Co2 L2 (NCS)2 ] is reported. This complex exhibits significant catalytic activity for hydrogen production in DMF by using triethylammonium (Et3 NHBF4 ) as the proton source. Cyclic voltammetry data allowed a maximum turnover frequency of 130 s-1 for 1 m proton concentration to be determined. The catalytic nature of the process and the production of dihydrogen were confirmed by gas analysis during controlled potential electrolysis experiments. Quantum chemical calculations show that the complex displays a ligand-assisted metal-centered reactivity and supports a catalytic mechanism involving ligand-based reduction and protonation steps followed by metal-centered processes.

16.
Chemistry ; 24(20): 5213-5224, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406617

RESUMO

Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf)2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(µ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction.

17.
Inorg Chem ; 56(14): 7707-7719, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28665137

RESUMO

The redox properties and electronic structures of a series of phenoxo- and hydroxo-bridged dicopper(II) complexes have been explored. Complexes (1a-c)2+ are based on symmetrical ligands with bis(2-methylpyridyl)aminomethyl as complexing arms bearing different substituting R groups (CH3, OCH3, or CF3) in the para position of the phenol moiety. Complex 2a2+ is based on a symmetrical ligand with bis(2-ethylpyridyl)aminomethyl arms and R = CH3, while complex 3a2+ involves an unsymmetrical ligand with two different complexing arms (namely bis(2-ethylpyridyl)aminomethyl and bis(2-methylpyridyl)aminomethyl). Investigations have been done by electrochemical and spectroelectrochemical means and correlated to theoretical calculations as this series of complexes offers a unique opportunity of an in-depth comparative analysis. The voltammetric studies have shown that the redox behavior of the dicopper complexes is not influenced by the nature of the solvent. However, the increase of the spacer chain length and the unsymmetrical design induce significant modifications of the voltammetric responses for both oxidation and reduction processes. DFT calculations of the redox potentials using a computational reference redox couple calculated at the same level of theory to reduce systematic errors confirm these results. Ligand contributions to the electronic structure of the different species have been analyzed in detail. The good agreement between experimental and theoretical results has validated the developed calculation method, which would be used in the following to design new dinuclear copper complexes. These studies demonstrate that subtle modification of the ligand topology can significantly affect the redox and spectroscopic properties. In particular, the unsymmetrical design allows the formation of a transient mixed-valent Cu(II)-Cu(III) phenoxo complex detected upon spectroelectrochemical experiments at room temperature, which evolves toward a dicopper (II,II) phenoxyl complex. The latter displays an intense π → π* transition band at 393 nm in the UV-vis spectrum compared to the less intense ligand to metal charge transfer band at 518 nm observed for the mixed-valent Cu(II)-Cu(III) phenoxo complex.

18.
Arch Biochem Biophys ; 623-624: 31-41, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522117

RESUMO

1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity.


Assuntos
Aminoácido Oxirredutases/metabolismo , Cobre/metabolismo , Petunia/enzimologia , Aminoácido Oxirredutases/química , Sítios de Ligação , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Petunia/química , Petunia/metabolismo , Conformação Proteica , Especificidade por Substrato
19.
ACS Med Chem Lett ; 8(1): 55-60, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105275

RESUMO

With the aim to develop effective and selective human tyrosinase inhibitors, we investigated aurone derivatives whose B-ring was replaced by a non-oxidizable 2-hydroxypyridine-N-oxide (HOPNO) moiety. These aurones were synthesized and evaluated as inhibitors of purified human tyrosinase. Excellent inhibition activity was revealed and rationalized by theoretical calculations. The aurone backbone was especially found to play a crucial role, as the HOPNO moiety alone provided very modest activity on human tyrosinase. Furthermore, the in vitro activity was confirmed by measuring the melanogenesis suppression ability of the compounds in melanoma cell lysates and whole cells. Our study reveals that HOPNO-embedded 6-hydroxyaurone is to date the most effective inhibitor of isolated human tyrosinase. Owing to its low toxicity and its high inhibition activity, it could represent a milestone on the path toward new valuable agents in dermocosmetics, as well as in medical fields where it was recently suggested that tyrosinase could play key roles.

20.
Inorg Chem ; 56(3): 1023-1026, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28060494

RESUMO

We report here two copper complexes as first functional models for lytic polysaccharide monooxygenases, mononuclear copper-containing enzymes involved in recalcitrant polysaccharide breakdown. These complexes feature structural and spectroscopic properties similar to those of the enzyme. In addition, they catalyze oxidative cleavage of the model substrate p-nitrophenyl-ß-d-glucopyranoside. More importantly, a particularly stable copper(II) hydroperoxide intermediate is detected in the reaction conditions.


Assuntos
Cobre/química , Oxigenases de Função Mista/química , Compostos Organometálicos/química , Polissacarídeos/química , Biocatálise , Cobre/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/metabolismo , Polissacarídeos/metabolismo , Teoria Quântica , Thermoascus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...