RESUMO
Extensive evidence shows that in addition to lifestyle factors, environmental aspects are an important risk factor for human health. Numerous approaches have been used to estimate the relationship between environment and health. For example, the urban characteristics, especially the types of land use, are considered a potential proxy indicator to evaluate risk of disease. Although several studies have used land use variables to assess human health, none of them has used the concept of Urban Morphology by Urban Structure Types (USTs) as indicators of land use. The aim of this study was to assess the relationship between USTs and cardiorespiratory disease risks in the Federal District, Brazil. Toward this end, we used a quantile regression model to estimate risk. We used 21 types of UST. Income and population density were used as covariates in our sensitivity analysis. Our analysis showed an association between cardiorespiratory diseases risk and 10 UST variables (1 related to rural area, 6 related to residential area, 1 recreational area, 1 public area and 1 commercial area). Our findings suggest that the conventional land use method may be missing important information about the effect of land use on human health. The use of USTs can be an approach to complement the conventional method. This should be of interest to policy makers in order to enhance public health policies and to create future strategies in terms of urban planning, land use and environmental health.
Assuntos
Cardiopatias/epidemiologia , Doenças Respiratórias/epidemiologia , Saúde da População Urbana , Urbanização/tendências , Brasil , Estudos Transversais , Feminino , Sistemas de Informação Geográfica , Cardiopatias/etiologia , Hospitalização/estatística & dados numéricos , Humanos , Modelos Teóricos , Análise de Regressão , Doenças Respiratórias/etiologia , Fatores de Risco , Saúde da População Urbana/normas , Saúde da População Urbana/tendênciasRESUMO
Atmospheric pollution in urban centers has been one of the main causes of human illness related to the respiratory and circulatory system. Efficient monitoring of air quality is a source of information for environmental management and public health. This study investigates the spatial patterns of atmospheric pollution using a spatial multicriteria model that helps target locations for air pollution monitoring sites. The main objective was to identify high-priority areas for measuring human exposures to air pollutants as they relate to emission sources. The method proved to be viable and flexible in its application to various areas.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Brasil , Cidades , Humanos , Modelos TeóricosRESUMO
O biomonitoramento é uma técnica alternativa que utiliza organismos vivos para verificar mudanças no meio ambiente ocasionadas pela poluição da água, ar e solo. Tendo como foco as emissões atmosféricas localizadas na região da Fercal no Distrito Federal, o presente estudo objetivou coletar amostras de casca da árvore da espécie Myracrodruon urundeuva para verificar a variabilidade espacial dos elementos químicos presentes na área de estudo. A análise de componente principal (PCA) permitiu agrupar os elementos em três fatores, distribuídos no fator 1: Zn, Fe, Al, S e Ba; no fator 2: Cu, P, Ca e Sr; e no fator 3: Mg e K. O fator 1 é o que melhor descreve o objeto de pesquisa. Este estudo permitiu demonstrar a viabilidade do método de biomonitoramento com casca de aroeira vermelha (Myracrodruon urundeuva) como instrumento de mensuração da poluição atmosférica.
Biomonitoring is an alternative technique that uses living organisms to verify changes in the environment caused by pollution of water, air and soil. Focusing on atmospheric emissions at Fercal, located in the Federal District region, the present study aimed to collect samples of the bark of the species Myracrodruon urundeuva to verify the spatial variability of the chemical elements present in the study area. The principal component analysis (PCA) allowed to group the elements into three factors: factor 1: Zn, Fe, Al, S, and Ba; factor 2: Cu, P, Ca, and Sr; and factor 3: Mg and K. Factor 1 is the one that best describes the research object. This study has demonstrated the feasibility of the method of biomonitoring with the bark of aroeira vermelha (Myracrodruon urundeuva) as an instrument for measuring air pollution.