Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(2): 746-752, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38086661

RESUMO

The presented simulation protocol provides a solid foundation for exploring two-dimensional materials. Taking the TiBr2 2H monolayer as an example, this material displays promising TMDC-like optical and excitonic properties, making it an excellent candidate for optoelectronic and valleytronic applications. The direct band gap semiconductor (1.19 eV) is both structurally and thermodynamically stable, with spin-orbit coupling effects revealing a broken mirror symmetry in the K and K' valleys of the band structure, as confirmed by opposite values of the Berry curvature. A direct and bright exciton ground state was found, with an exciton binding energy of 0.56 eV. The study also revealed an optical helicity selection rule, suggesting selectivity in the valley excitation by specific circular light polarizations.

2.
Sci Rep ; 13(1): 17157, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821570

RESUMO

Here, we performed a systematic DFT study assisted by the workflow framework SimStack for the mechanical and thermodynamic properties of the clay mineral lizardite in pristine and six different types of O vacancies configurations. In most cases, the defect caused a structural phase transition in the lizardite from the trigonal (pristine) to the triclinic phase. The results show that oxygen vacancies in lizardite significantly reduce the lattice thermal conductivity, accompanied by an elastic moduli reduction and an anisotropy index increase. Through the P-V relation, an increase in compressibility was evidenced for vacancy configurations. Except for the vacancy with the same crystalline structure as pristine lizardite, the sound velocities of the other vacancy configurations produce a decrease in these velocities, and it is essential to highlight high values for the Grüneisen parameter. We emphasize the great relevance of the punctual-defects introduction, such as O vacancies, in lizardite, since this microstructural design is responsible for the decrease of the lattice thermal conductivity in comparison with the pristine system by decreasing the heat transfer ability, turning lizardite into a promising candidate for thermoelectric materials.

3.
Sci Rep ; 13(1): 4446, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932128

RESUMO

Two-dimensional hybrid lead iodide perovskites based on methylammonium (MA) cation and butylammonium (BA) organic spacer-such as [Formula: see text]-are one of the most explored 2D hybrid perovskites in recent years. Correlating the atomistic profile of these systems with their optoelectronic properties is a challenge for theoretical approaches. Here, we employed first-principles calculations via density functional theory to show how the cation partially canceled dipole moments through the [Formula: see text] terminal impact the structural/electronic properties of the [Formula: see text] sublattices. Even though it is known that at high temperatures, the organic cation assumes a spherical-like configuration due to the rotation of the cations inside the cage, our results discuss the correct relative orientation according to the dipole moments for ab initio simulations at 0 K, correlating well structural and electronic properties with experiments. Based on the combination of relativistic quasiparticle correction and spin-orbit coupling, we found that the MA horizontal-like configuration concerning the inorganic sublattice surface leads to the best relationship between calculated and experimental gap energy throughout n = 1, 2, 3, 4, and 5 number of layers. Conversely, the dipole moments cancellation (as in BA-MA aligned-like configuration) promotes the closing of the gap energies through an electron depletion mechanism. We found that the anisotropy [Formula: see text] isotropy optical absorption conversion (as a bulk convergence) is achieved only for the MA horizontal-like configuration, which suggests that this configuration contribution is the majority in a scenario under temperature effects.

4.
J Comput Chem ; 44(14): 1395-1403, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36805580

RESUMO

Because of instability issues presented by metal halide perovskites based on methylammonium (MA), its replacement to Cs has emerged as an alternative to improve the materials' durability. However, the impact of this replacement on electronic properties, especially gap energy and bulk Rashba splitting remains unclear since electrostatic interactions from organic cations can play a crucial role. Through first-principles calculations, we investigated how organic/inorganic cations impact the electronic properties of MAPbI 3 and CsPbI 3 perovskites. Although at high temperatures the organic cation can assume spherical-like configurations due to its rotation into the cages, our results provide a complete electronic mechanism to show, from a chemical perspective based on ab initio calculations at 0 K , how the MA dipoles suppression can reduce the MAPbI 3 gap energy by promoting a degeneracy breaking in the electronic states from the PbI 3 framework, while the dipole moment reinforcement is crucial to align theory ↔ experiment, increasing the bulk Rashba splitting through higher Pb off-centering motifs. The lack of permanent dipole moment in Cs results in CsPbI 3 polymorphs with a pronounced Pb on-centering-like feature, which causes suppression in their respective bulk Rashba effect.

5.
J Comput Chem ; 44(10): 1040-1051, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36576316

RESUMO

Gold and silver subnanoclusters with few atoms are prominent candidates for catalysis-related applications, primarily because of the large fraction of lower-coordinated atoms exposed and ready to interact with external chemical species. However, an in-depth energetic analysis is necessary to characterize the relevant terms within the molecular adsorption process that can frame the interactions within the Sabatier principle. Herein, we investigate the interaction between Agn and Aun subnanoclusters (clu, n = 2-7) and N2 , NO, CO, and O2 molecules, using scalar-relativistic density functional theory calculations within van der Waals D3 corrections. The onefold top site is preferred for all chemisorption cases, with a predominance of linear (≈180°) and bent (≈120°) molecular geometries. A larger magnitude of adsorption energy is correlated with smaller distances between molecules and clusters and with the weakening of the adsorbates bond strength represented by the increase of the equilibrium distances and decrease of molecular stretching frequencies. From the energetic decomposition, the interaction energy term was established as an excellent descriptor to classify subnanoclusters in the adsorption/desorption process concomitant with the Sabatier principle. The limiting cases: (i) weak molecular adsorption on the subnanoclusters, which may compromise the reaction activation, where an interaction energy magnitude close to 0 eV is observed (e.g., physisorption in N2 /Ag6 ); and (ii) strong molecular interactions with the subnanoclusters, given the interaction energy magnitude is larger than at least one of the individual fragment binding energies (e.g., strong chemisorption in CO/Au4 and NO/Au4 ), conferring a decrease in the desorption rate and an increase in the possible poisoning rate. However, the intermediate cases are promising by involving interaction energy magnitudes between zero and fragment binding energies. Following the molecular closed-shell (open-shell) electronic configuration, we find a predominant electrostatic (covalent) nature of the physical interactions for N2 ⋯clu and CO ⋯clu (O2 ⋯clu and NO⋯clu), except in the physisorption case (N2 /Ag6 ) where dispersive interaction is dominant. Our results clarify questions about the molecular adsorption on subnanoclusters as a relevant mechanistic step present in nanocatalytic reactions.

6.
J Phys Chem Lett ; 12(30): 7245-7251, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34313438

RESUMO

We quantified the bulk Rashba splitting and suppression in polymorphs of MA(Pb, Sn, Ge, or Si)I3 perovskites. The low-computational-cost DFT-1/2 quasiparticle correction was performed for all structures, combined with the inclusion of spin-orbit coupling (SOC) effects. The presence of SOC and symmetry breaking from the metal off-centering octahedral distortion are indispensable and essential conditions for Rashba splitting, whose magnitude emerges from the Pb → Si sequence. Additionally, the quasiparticle correction provides energy bandgaps for MAPbI3 (cubic, tetragonal, and orthorhombic), MASnI3 (cubic and tetragonal), and MAGeI3 (cubic) that are in outstanding agreement with experimental results. However, while gap energies are yielded collaboratively from the metal off-centering and relative octahedral tiltings, the bulk Rashba suppression is reached for metal on-centering (octahedral platonic-like) configurations that are thermodynamically stable even when the charge polarization is kept invariant among metal-I bonds in the polymorphs.

7.
J Phys Condens Matter ; 27(41): 415502, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26417925

RESUMO

Graphite is a stack of honeycomb (graphene) layers bound together by nonlocal, long-range van der Waals (vdW) forces, which are poorly described by density functional theory (DFT) within local or semilocal exchange-correlation functionals. Several approximations have been proposed to add a vdW correction to the DFT total energies (Stefan Grimme (D2 and D3) with different damping functions (D3-BJ), Tkatchenko-Scheffler (TS) without and with self-consistent screening (TS + SCS) effects). Those corrections have remarkly improved the agreement between our results and experiment for the interlayer distance (from 3.9 to 0.6%) [corrected] and high-level random-phase approximation (RPA) calculations for interlayer binding energy (from 69.5 to 1.5%). [corrected]. We report a systematic investigation of various structural, energetic and electron properties with the aforementioned vdW corrections followed by comparison with experimental and theoretical RPA data. Comparison between the resulting relative errors shows that the TS + SCS correction provides the best results; the other corrections yield significantly larger errors for at least one of the studied properties. If considerations of computational costs or convergence problems rule out the TS + SCS approach, we recommend the D3-BJ correction. Comparison between the computed π(z)Γ-splitting and experimental results shows disagreements of 10% or more with all vdW corrections. Even the computationally more expensive hybrid PBE0 has proved unable to improve the agreement with the measured splitting. Our results indicate that improvements of the exchange-correlation functionals beyond the vdW corrections are necessary to accurately describe the band structure of graphite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...