Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Fluids (1994) ; 34(3): 033301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342280

RESUMO

During the COVID-19 pandemic, many millions have worn masks made of woven fabric to reduce the risk of transmission of COVID-19. Masks are essentially air filters worn on the face that should filter out as many of the dangerous particles as possible. Here, the dangerous particles are the droplets containing the virus that are exhaled by an infected person. Woven fabric is unlike the material used in standard air filters. Woven fabric consists of fibers twisted together into yarns that are then woven into fabric. There are, therefore, two lengthscales: the diameters of (i) the fiber and (ii) the yarn. Standard air filters have only (i). To understand how woven fabrics filter, we have used confocal microscopy to take three-dimensional images of woven fabric. We then used the image to perform lattice Boltzmann simulations of the air flow through fabric. With this flow field, we calculated the filtration efficiency for particles a micrometer and larger in diameter. In agreement with experimental measurements by others, we found that for particles in this size range, the filtration efficiency is low. For particles with a diameter of 1.5 µm, our estimated efficiency is in the range 2.5%-10%. The low efficiency is due to most of the air flow being channeled through relatively large (tens of micrometers across) inter-yarn pores. So, we conclude that due to the hierarchical structure of woven fabrics, they are expected to filter poorly.

2.
J Chem Phys ; 155(11): 114901, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551522

RESUMO

While proteins have been treated as particles with a spherically symmetric interaction, of course in reality, the situation is rather more complex. A simple step toward higher complexity is to treat the proteins as non-spherical particles and that is the approach we pursue here. We investigate the phase behavior of the enhanced green fluorescent protein (eGFP) under the addition of a non-adsorbing polymer, polyethylene glycol. From small angle x-ray scattering, we infer that the eGFP undergoes dimerization and we treat the dimers as spherocylinders with aspect ratio L/D - 1 = 1.05. Despite the complex nature of the proteins, we find that the phase behavior is similar to that of hard spherocylinders with an ideal polymer depletant, exhibiting aggregation and, in a small region of the phase diagram, crystallization. By comparing our measurements of the onset of aggregation with predictions for hard colloids and ideal polymers [S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006) and Lo Verso et al., Phys. Rev. E 73, 061407 (2006)], we find good agreement, which suggests that the behavior of the eGFP is consistent with that of hard spherocylinders and ideal polymers.


Assuntos
Coloides , Polímeros , Agregados Proteicos , Proteínas , Coloides/química , Cristalização , Polímeros/química , Proteínas/química
3.
Soft Matter ; 17(28): 6873-6883, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231559

RESUMO

Natural and artificial proteins with designer properties and functionalities offer unparalleled opportunity for functional nanoarchitectures formed through self-assembly. However, to exploit this potential we need to design the system such that assembly results in desired architecture forms while avoiding denaturation and therefore retaining protein functionality. Here we address this challenge with a model system of fluorescent proteins. By manipulating self-assembly using techniques inspired by soft matter where interactions between the components are controlled to yield the desired structure, we have developed a methodology to assemble networks of proteins of one species which we can decorate with another, whose coverage we can tune. Consequently, the interfaces between domains of each component can also be tuned, with potential applications for example in energy - or electron - transfer. Our model system of eGFP and mCherry with tuneable interactions reveals control over domain sizes in the resulting networks.


Assuntos
Nanoestruturas , Proteínas
4.
Phys Fluids (1994) ; 33(4): 043112, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33953528

RESUMO

In the COVID-19 pandemic, among the more controversial issues is the use of masks and face coverings. Much of the concern boils down to the question-just how effective are face coverings? One means to address this question is to review our understanding of the physical mechanisms by which masks and coverings operate-steric interception, inertial impaction, diffusion, and electrostatic capture. We enquire as to what extent these can be used to predict the efficacy of coverings. We combine the predictions of the models of these mechanisms which exist in the filtration literature and compare the predictions with recent experiments and lattice Boltzmann simulations, and find reasonable agreement with the former and good agreement with the latter. Building on these results, we explore the parameter space for woven cotton fabrics to show that three-layered cloth masks can be constructed with comparable filtration performance to surgical masks under ideal conditions. Reusable cloth masks thus present an environmentally friendly alternative to surgical masks so long as the face seal is adequate enough to minimize leakage.

5.
J Chem Phys ; 147(12): 124504, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964008

RESUMO

We perform particle resolved experimental studies on the heterogeneous crystallisation process of two component mixtures of hard spheres. The components have a size ratio of 0.39. We compared these with molecular dynamics simulations of homogenous nucleation. We find for both experiments and simulations that the final assemblies are interstitial solid solutions, where the large particles form crystalline close-packed lattices, whereas the small particles occupy random interstitial sites. This interstitial solution resembles that found at equilibrium when the size ratios are 0.3 [L. Filion et al., Phys. Rev. Lett. 107, 168302 (2011)] and 0.4 [L. Filion, Ph.D. thesis, Utrecht University, 2011]. However, unlike these previous studies, for our system simulations showed that the small particles are trapped in the octahedral holes of the ordered structure formed by the large particles, leading to long-lived non-equilibrium structures in the time scales studied and not the equilibrium interstitial solutions found earlier. Interestingly, the percentage of small particles in the crystal formed by the large ones rapidly reaches a maximum of ∼14% for most of the packing fractions tested, unlike previous predictions where the occupancy of the interstitial sites increases with the system concentration. Finally, no further hopping of the small particles was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...