Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190371

RESUMO

Detecting determinism and nonlinear properties from empirical time series is highly nontrivial. Traditionally, nonlinear time series analysis is based on an error-prone phase space reconstruction that is only applicable for stationary, largely noise-free data from a low-dimensional system and requires the nontrivial adjustment of various parameters. We present a data-driven index based on Fourier phases that detects determinism at a well-defined significance level, without using Fourier transform surrogate data. It extracts nonlinear features, is robust to noise, provides time-frequency resolution by a double running window approach, and potentially distinguishes regular and chaotic dynamics. We test this method on data derived from dynamical models as well as on real-world data, namely, intracranial recordings of an epileptic patient and a series of density related variations of sediments of a paleolake in Tlaxcala, Mexico.

2.
R Soc Open Sci ; 9(2): 210463, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35127109

RESUMO

Both parametric and non-parametric approaches to time-series analysis have advantages and drawbacks. Parametric methods, although powerful and widely used, can yield inconsistent results due to the oversimplification of the observed phenomena. They require the setting of arbitrary constants for their creation and refinement, and, although these constants relate to assumptions about the observed systems, it can lead to erroneous results when treating a very complex problem with a sizable list of unknowns. Their non-parametric counterparts, instead, are more widely applicable but present a higher detrimental sensitivity to noise and low density in the data. For the case of approximately periodic phenomena, such as human actigraphic time series, parametric methods are widely used and concepts such as acrophase are key in chronobiology, especially when studying healthy and diseased human populations. In this work, we present a non-parametric method of analysis of actigraphic time series from insomniac patients and healthy age-matched controls. The method is fully data-driven, reproduces previous results in the context of activity offset delay and, crucially, extends the concept of acrophase not only to circadian but also for ultradian spectral components.

3.
Neuroimage ; 246: 118763, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863961

RESUMO

Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and temporally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as with the brain's energy balance.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Rede de Modo Padrão/fisiologia , Eletroencefalografia/métodos , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adolescente , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
4.
Front Neurosci ; 13: 941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572110

RESUMO

The characterization of the functional network of the brain dynamics has become a prominent tool to illuminate novel aspects of brain functioning. Due to its excellent time resolution, such research is oftentimes based on electroencephalographic recordings (EEG). However, a particular EEG-reference might cause crucial distortions of the spatiotemporal interrelation pattern and may induce spurious correlations as well as diminish genuine interrelations originally present in the dataset. Here we investigate in which manner correlation patterns are affected by a chosen EEG reference. To this end we evaluate the influence of 7 popular reference schemes on artificial recordings derived from well controlled numerical test frameworks. In this respect we are not only interested in the deformation of spatial interrelations, but we test additionally in which way the time evolution of the functional network, estimated via some bi-variate interrelation measures, gets distorted. It turns out that the median reference as well as the global average show the best performance in most situations considered in the present study. However, if a collective brain dynamics is present, where most of the signals get correlated, these schemes may also cause crucial deformations of the functional network, such that the parallel use of different reference schemes seems advisable.

5.
Sci Rep ; 6: 23402, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025405

RESUMO

Liesegang pattern formations are widely spread in nature. In spite of a comparably simple experimental setup under laboratory conditions, a variety of spatio-temporal structures may arise. Presumably because of easier control of the experimental conditions, Liesegang pattern formation was mainly studied in gel systems during more than a century. Here we consider pattern formation in a gas phase, where beautiful but highly complex reaction-diffusion-convection dynamics are uncovered by means of a specific laser technique. A quantitative analysis reveals that two different, apparently independent processes, both highly correlated and synchronized across the extension of the reaction cloud, act on different time scales. Each of them imprints a different structure of salt precipitation at the tube walls.

6.
Chaos ; 26(12): 123106, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28039985

RESUMO

Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...