Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 6(4): 1054-63, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703748

RESUMO

The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either "low-adhesive" non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies.

2.
Cell Rep ; 6(3): 467-81, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24485658

RESUMO

Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/ß-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that ß-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/ß-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Diferenciação Celular , Regeneração/genética , Via de Sinalização Wnt , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Nadadeiras de Animais/citologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Epiderme/metabolismo , Epiderme/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas Hedgehog/metabolismo , Ligantes , Modelos Biológicos , Especificidade de Órgãos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Fatores de Tempo , Tretinoína/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...