Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1834(2): 568-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220419

RESUMO

The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof. The amino acid residues 30-70 of PR8 PB1-F2 were found to be responsible for amyloid formation of the protein, which could be assigned to formation of ß-sheet structures, although α-helices were the only structural features detected under conditions that mimic a membranous environment. At membranous conditions, in which the proteins are found in their most structured state, significant differences become apparent between the PB1-F2 variants investigated. In contrast to Pandemic flu 2009 H1N1 and PR8 PB1-F2, which exhibit a continuous extensive C-terminal α-helix, both Spanish flu H1N1 and Bird flu H5N1 PB1-F2 contain a loop region with residues 66-71 that divides the C-terminus into two shorter helices. The observed structural differences are located to the C-terminal ends of the proteins to which most of the known functions of these proteins have been assigned. A C-terminal helix-loop-helix motif might be a structural signature for PB1-F2 of the highly pathogenic influenza viruses as observed for 1918 Spanish flu H1N1 and Bird flu H5N1 PB1-F2. This signature could indicate the pathological nature of viruses emerging in the future and thus aid in the recognition of these viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Virus da Influenza A Subtipo H5N1/química , Proteínas Virais/química , Amiloide/química , Amiloide/genética , Sequências Hélice-Alça-Hélice , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Especificidade da Espécie , Proteínas Virais/genética
2.
Biochim Biophys Acta ; 1824(4): 667-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22342556

RESUMO

The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.


Assuntos
Ciclofilina A/química , HIV-1/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Domínio Catalítico , HIV-1/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Solventes/química , Ressonância de Plasmônio de Superfície
3.
BMC Struct Biol ; 10: 31, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20920334

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined. RESULTS: Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding. CONCLUSIONS: Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data. In detail the SPR data of this interaction were compatible with a two-state binding interaction model that involves a conformational change during binding. This is in accord with the structural changes observed by NMR suggesting CypA catalyzes the prolyl cis/trans interconversion during binding to the RHFP35RIW motif of N-terminal Vpr.


Assuntos
Ciclofilina A/metabolismo , Peptidilprolil Isomerase/metabolismo , Prolina/metabolismo , Ligação Proteica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Replicação Viral/fisiologia
4.
J Pept Sci ; 16(1): 65-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19924731

RESUMO

To prevent aspartimide formation and related side products in Asp-Xaa, particularly Asp-Gly-containing peptides, usually the 2-hydroxy-4-methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc-protocols. In the present study, the usefulness of the recently proposed acid-labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N-terminal H-(Dcpm)Gly-peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc-Asp(OtBu)-(Dcpm)Gly-OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin-cleavage step.


Assuntos
Amidas/química , Dipeptídeos/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
BMC Struct Biol ; 9: 74, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20015412

RESUMO

BACKGROUND: The equine infection anemia virus (EIAV) p9 Gag protein contains the late (L-) domain required for efficient virus release of nascent virions from the cell membrane of infected cell. RESULTS: In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively) were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this alpha-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. CONCLUSIONS: These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX) via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101). The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.


Assuntos
Proteínas de Ligação ao Cálcio/química , Produtos do Gene gag/química , HIV-1/química , Vírus da Anemia Infecciosa Equina/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Dicroísmo Circular , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
7.
J Pept Sci ; 14(8): 954-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18381743

RESUMO

The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian isolates. Previous synthetic protocols have been improved to provide a synthetic full length H1N1 type PB1-F2 protein that is encoded by the 'Spanish flu' isolate and an equivalent protein from an avian host that is representative of a highly pathogenic H5N1 'bird flu' isolate, termed SF2 and BF2, respectively. Full length SF2, different mutants of BF2 and a number of fragments of these peptides have been synthesized by either the standard solid-phase peptide synthesis method or by native chemical ligation of unprotected N- and C-terminal peptide fragments. For SF2 chemical ligation made use of the histidine and the cysteine residues located in positions 41 and 42 of the native sequence, respectively, to afford a highly efficient synthesis of SF2 compared to the standard SPPS elongation method. By-product formation at the aspartic acid residue in position 23 was prevented by specific modifications of the SPPS protocol. As the native sequence of BF2 does not contain a cysteine residue two different mutants of BF2 (Y42C) and BF2 (S47C) with appropriate cysteine exchanges were produced. In addition to the full length molecules, fragments of the native sequences were synthesized for comparison of their physical characteristics with those from the H1N1 human isolate A/Puerto Rico/8/34 (H1N1). All peptides were analyzed by mass spectrometry, (1)H NMR spectroscopy, and SDS-PAGE. The protocols allow the synthesis of significant amounts of PB1-F2 and its related peptides.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Virus da Influenza A Subtipo H5N1/química , Influenza Aviária , Influenza Humana , Proteínas Virais/síntese química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Aves , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Dados de Sequência Molecular , Peso Molecular , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo , Proteínas Virais/química , Proteínas Virais/isolamento & purificação
8.
J Biol Chem ; 282(1): 353-63, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17052982

RESUMO

Recently, a novel 87-amino acid influenza A virus protein with proapoptotic properties, PB1-F2, has been reported that originates from an alternative reading frame in the PB1 polymerase gene and is encoded in most known human influenza A virus isolates. Here we characterize the molecular structure of a biologically active synthetic version of the protein (sPB1-F2). Western blot analysis, chemical cross-linking, and NMR spectroscopy afforded direct evidence of the inherent tendency of sPB1-F2 to undergo oligomerization mediated by two distinct domains located in the N and C termini, respectively. CD and (1)H NMR spectroscopic analyses indicate that the stability of structured regions in the molecule clearly depends upon the hydrophobicity of the solvent. In aqueous solutions, the behavior of sPB1-F2 is typical of a largely random coil peptide that, however, adopts alpha-helical structure upon the addition of membrane mimetics. (1)H NMR analysis of three overlapping peptides afforded, for the first time, direct experimental evidence of the presence of a C-terminal region with strong alpha-helical propensity comprising amino acid residues Ile(55)-Lys(85) connected via an essentially random coil structure to a much weaker helix-like region, located in the N terminus between residues Trp(9) and Lys(20). The C-terminal helix is not a true amphipathic helix and is more compact than previously predicted. It corresponds to a positively charged region previously shown to include the mitochondrial targeting sequence of PB1-F2. The consequences of the strong oligomerization and helical propensities of the molecule are discussed and used to formulate a hypothetical model of its interaction with the mitochondrial membrane.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Dicroísmo Circular , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química , Triptofano/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...