Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(1): 243-256, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668978

RESUMO

KEY MESSAGE: Association mapping with immortalized lines of landraces offers several advantages including a high mapping resolution, as demonstrated here in maize by identifying the causal variants underlying QTL for oil content and the metabolite allantoin. Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allantoinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines for studies using ancestral landraces for crop genetic research and breeding.


Assuntos
Biblioteca Gênica , Genes de Plantas , Locos de Características Quantitativas , Zea mays/genética , Estudos de Associação Genética , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Especificidade da Espécie
2.
PLoS One ; 9(1): e85435, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24409329

RESUMO

Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL). Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass), but also molecular phenotype (metabolite profiles). Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.


Assuntos
Hibridização Genética , Metaboloma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Biomassa , Cruzamento , Análise por Conglomerados , Metabolômica
3.
J Exp Bot ; 64(8): 2231-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23530131

RESUMO

Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels.


Assuntos
Cloroplastos/metabolismo , Endosperma/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Amido/biossíntese , Zea mays/metabolismo , Cloroplastos/enzimologia , Endosperma/enzimologia , Endosperma/ultraestrutura , Fosfogluconato Desidrogenase/fisiologia , Zea mays/enzimologia
4.
Plant J ; 68(2): 326-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21707803

RESUMO

We conducted a comparative analysis of the root metabolome of six parental maize inbred lines and their 14 corresponding hybrids showing fresh weight heterosis. We demonstrated that the metabolic profiles not only exhibit distinct features for each hybrid line compared with its parental lines, but also separate reciprocal hybrids. Reconstructed metabolic networks, based on robust correlations between metabolic profiles, display a higher network density in most hybrids as compared with the corresponding inbred lines. With respect to metabolite level inheritance, additive, dominant and overdominant patterns are observed with no specific overrepresentation. Despite the observed complexity of the inheritance pattern, for the majority of metabolites the variance observed in all 14 hybrids is lower compared with inbred lines. Deviations of metabolite levels from the average levels of the hybrids correlate negatively with biomass, which could be applied for developing predictors of hybrid performance based on characteristics of metabolite patterns.


Assuntos
Metaboloma , Extratos Vegetais/química , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Biomassa , Cruzamentos Genéticos , Genótipo , Vigor Híbrido , Endogamia , Padrões de Herança , Lipídeos/análise , Redes e Vias Metabólicas , Metabolômica , Modelos Biológicos , Raízes de Plantas/química , Raízes de Plantas/genética , Análise de Componente Principal , Zea mays/química , Zea mays/genética
5.
Theor Appl Genet ; 120(2): 369-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19898829

RESUMO

Heterosis is the superior performance of hybrids over their inbred parents. Despite its importance, little is known about the genetic and molecular basis of this phenomenon. Heterosis has been extensively exploited in plant breeding, particularly in maize (Zea mays, L.), and is well documented in the B73 and Mo17 maize inbred lines and their F1 hybrids. In this study, we determined the dry matter, the levels of starch and protein components and a total of 24 low-molecular weight metabolites including sugars, sugar-phosphates, and free amino acids, in developing maize kernels between 8 and 30 days post-pollination (DPP) of the hybrid B73 x Mo17 and its parental lines. The tissue specificity of amino acid and protein content was investigated between 16 and 30 DPP. Key observations include: (1) most of the significant differences in the investigated tissue types occurred between Mo17 and the other two genotypes; (2) heterosis of dry matter and metabolite content was detectable from the early phase of kernel development onwards; (3) the majority of metabolites exhibited an additive pattern. Nearly 10% of the metabolites exhibited nonadditive effects such as overdominance, underdominance, and high-parent and low-parent dominance; (4) The metabolite composition was remarkably dependent on kernel age, and this large developmental effect could possibly mask genotypic differences; (5) the metabolite profiles and the heterotic patterns are specific for endosperm and embryo. Our findings illustrate the power of metabolomics to characterize heterotic maize lines and suggest that the metabolite composition is a potential marker in the context of heterosis research.


Assuntos
Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Vigor Híbrido , Zea mays/genética , Perfilação da Expressão Gênica , Hibridização Genética , Endogamia , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
6.
Phytochemistry ; 68(16-18): 2273-89, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17507062

RESUMO

A tobacco plant was illuminated for 5h in an atmosphere containing (13)CO(2) and then maintained for 10 days under standard greenhouse conditions. Nicotine, glucose, and amino acids from proteins were isolated chromatographically. Isotopologue abundances of isolated metabolites were determined quantitatively by NMR spectroscopy and mass spectrometry. The observed non-stochastic isotopologue patterns indicate (i) formation of multiply labeled photosynthetic carbohydrates during the (13)CO(2) pulse phase followed by (ii) partial catabolism of the primary photosynthetic products, and (iii) recombination of the (13)C-labeled fragments with unlabeled intermediary metabolites during the chase period. The detected and simulated isotopologue profiles of glucose and amino acids reflect carbon partitioning that is dominated by the Calvin cycle and glycolysis/glucogenesis. Retrobiosynthetic analysis of the nicotine pattern is in line with its known formation from nicotinic acid and putrescine via aspartate, glyceraldehyde phosphate and alpha-ketoglutarate as basic building blocks. The study demonstrates that pulse/chase labeling with (13)CO(2) as precursor is a powerful tool for the analysis of quantitative aspects of plant metabolism in completely unperturbed whole plants.


Assuntos
Dióxido de Carbono/metabolismo , Nicotiana/metabolismo , Aminoácidos/química , Aminoácidos/isolamento & purificação , Aminoácidos/metabolismo , Dióxido de Carbono/química , Isótopos de Carbono , Simulação por Computador , Glucose/química , Glucose/isolamento & purificação , Glucose/metabolismo , Espectrometria de Massas , Nicotina/química , Nicotina/isolamento & purificação , Nicotina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...