Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 291: 118165, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536642

RESUMO

There is a growing need to recover degraded soils to restore their essential ecosystem services and limit damages of anthropic activities onto these systems. Safe and sustainable solutions for long-term recovery must be designed, ideally by recycling existing resources. Using ash from combustion of residual forest biomass at the pulp and paper industry is an interesting and sustainable strategy to recover mining soils. However, formulations must be found to limit the potential toxicity associated with soluble salts and chloride that ash contains. Here, we assessed the effectiveness of three field ash-based amendments for the recovery of three highly acidic soils from Portuguese abandoned mines. Three amendments were tested: an un-stabilized mixture of ash and biological sludge, granulated ash, and granulated ash mixed with composted sludge. One year after application in open field plots (in the scope of LIFE No_Waste project), soil health restoration was evaluated through (i) soil physico-chemical characterization and (ii) soil habitat functions though standardized ecotoxicological tests. This study highlights that stabilized materials provided nutrients, organic matter and alkalinity that corrected soil pH and decreased metal bioavailability, while controlling the release of soluble salts and chloride from ash. This soil improvement correlated with improved soil model organisms' reproduction and survival. For similar amendment, the native soil properties studied (as soil native electrical conductivity) affected the level of organism response. This work provides evidence that ash stabilization, formulation and supplementation with organic matter could be sustainable strategies to restore highly degraded mining soils and to recover their ecological functions. It further highlights the importance of analyzing combined effects on soil physico-chemical properties and ecological function recovery to assess restoration strategy efficiencies in complex multi-stressor environments.


Assuntos
Poluentes do Solo , Solo , Biomassa , Ecossistema , Mineração , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Environ Sci Pollut Res Int ; 24(17): 14770-14781, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28470498

RESUMO

Although bottom ash (BA) [or mixtures of bottom and fly ash (FA)] from clean biomass fuels is currently used as liming agent, additive for compost, and fertilizer on agricultural and forest soils in certain European countries, in several other countries most of the ashes are currently disposed in landfills. This is due to both a lack of a proper classification of the materials and of regulatory barriers.Chemical characterization including analysis of an array of potentially toxic elements (PTEs) proved that over 100,000 tons of BA currently landfilled every year in Portugal actually complied with legal limits for PTEs for soil fertilizers applied in other countries. Pot experiments were conducted, testing three dosages of BA and FA (1, 2.5, and 5%, in weight) in three mining soils with different properties. Additions of ash materials to soils led to an increase in the pore water pH relative to control pots (0% of ash added) and had a clear impact on DOC and on the solubilization of both macro- and micronutrients (notably Cu).The results from the case study using BA and FA from a Portuguese biomass thermal power plant demonstrate that it is imperative to further develop a regulatory framework to alleviate technological and environmental barriers for biomass ash utilization as raw material for fertilizers and/or soil liming agent, in accordance with the goals of the circular economy. A more harmonized view on how to assess the merits and risks of the re-use of these materials is also needed.


Assuntos
Cinza de Carvão , Florestas , Reciclagem , Biomassa , Europa (Continente) , Portugal , Solo
3.
Environ Sci Technol ; 51(4): 2246-2253, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28164700

RESUMO

Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation.


Assuntos
Poluentes do Solo , Solo/química , Metais Pesados , Ácido Nítrico
4.
Chemosphere ; 135: 304-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25966049

RESUMO

To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8 mg Ag kg(-1) soil). Following a 45 days stabilization period, the geochemical reactivity was determined by extraction using 0.43 M and 2 M HNO3. The bioaccessibility of AgNPs was evaluated using the Simplified Bioaccessibility Extraction Test (SBET) the "Unified BARGE Method" (UBM), and two simulated lung fluids (modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF)). The amount of Ag extracted by 0.43 M and 2 M HNO3 soil tests was <8% and <50%, respectively of the total amount of Ag added to soils suggesting that the reactivity of Ag present in the soil can be relatively low. The bioaccessibility of Ag as determined by the four in vitro tests ranged from 17% (ALF extraction) to 99% (SBET) indicating that almost all Ag can be released from soil due to specific interactions with the organic ligands present in the simulated body fluids. This study shows that to develop sound soil risk evaluations regarding soil contamination with AgNPs, aspects of Ag biochemistry need to be considered, particularly when linking commonly applied soil tests to human risk assessment.


Assuntos
Recuperação e Remediação Ambiental/métodos , Nanopartículas/metabolismo , Prata/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Poluição Ambiental/análise , Humanos , Nanopartículas/análise , Medição de Risco , Prata/análise , Poluentes do Solo/análise
5.
Environ Pollut ; 183: 234-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23194645

RESUMO

To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO3 (reactive), 0.01 M CaCl2 (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO3 method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs.


Assuntos
Monitoramento Ambiental/métodos , Metais/análise , Poluentes do Solo/análise , Solo/química , Mineração , Medição de Risco/métodos
6.
Rev Environ Contam Toxicol ; 191: 91-130, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17708073

RESUMO

Assessment of the risk of elevated soil metal concentrations requires appropriate critical limits for metal concentrations in soil in view of ecological and human toxicological risks. This chapter presents an overview of methodologies to derive critical total metal concentrations in soils for Cd, Pb, and Hg as relevant to health effects on animals and humans, taking into account the effect of soil properties. The approach is based on the use of nonlinear relationships for metals in soil, soil solution, plants, and soil invertebrates, including soil properties that affect metal availability in soil. Results indicate that the impact of soil properties on critical soil metal concentrations is mainly relevant for Cd because of significant soil-plant, soil-solution, and soil-worm relationships. Critical Cd levels in soil thus derived are sometimes lower than those related to ecotoxicological impacts on soil organisms/processes and plants, which is especially true for critical soil Cd concentrations in view of food quality criteria for wheat, drinking water quality, and acceptable daily intakes of worm-eating birds and mammals. There are, however, large uncertainties involved in the derivation from assumptions made in the calculation and uncertainties in acceptable daily intakes and in relationships for Cd in soil, soil solution, plants, and soil invertebrates. Despite these uncertainties, the analyses indicate that present Cd concentrations in parts of the rural areas are in excess of the critical levels at which effects in both agricultural and nonagricultural systems can occur.


Assuntos
Metais Pesados/normas , Poluentes do Solo/normas , Agricultura , Animais , Contaminação de Alimentos , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo/análise , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Incerteza , Abastecimento de Água/normas
7.
Environ Pollut ; 150(3): 338-46, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17408823

RESUMO

The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/toxicidade , Micorrizas/fisiologia , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Biomassa , Cádmio/toxicidade , Fosfatos de Cálcio , Carvão Mineral , Cobre/toxicidade , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Chumbo/toxicidade , Poaceae/microbiologia , Microbiologia do Solo , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...