Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 8(10): 1153-1159, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109610

RESUMO

Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.


Assuntos
Arabidopsis , Cromossomos de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Sistemas CRISPR-Cas , Melhoramento Vegetal
2.
Nat Protoc ; 17(5): 1332-1358, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35388178

RESUMO

The rise of the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has made it possible to induce double-strand breaks at almost any desired target site in the genome. In plant somatic cells, double-strand breaks are predominantly repaired by the error-prone nonhomologous end-joining pathway, which can lead to mutations at the break site upon repair. So far, it had only been possible to induce genomic changes of up to a few hundred kilobases in plants utilizing this mechanism. However, by combining the highly efficient Staphylococcus aureus Cas9 (SaCas9) with an egg-cell-specific promoter to facilitate heritable mutations, chromosomal rearrangements in the Mb range, such as inversion and translocations, were obtained in Arabidopsis thaliana recently. Here we describe the chromosome-engineering protocol used to generate these heritable chromosomal rearrangements in A. thaliana. The protocol is based on Agrobacterium-mediated transformation of A. thaliana with transfer DNA constructs containing SaCas9, which is driven by an egg-cell-specific promoter, and two guide RNAs that have been preselected based on their cutting efficiency. In the T1 generation, primary transformants are selected and, if required, analyzed by Droplet Digital PCR and propagated. In the following generations, junction-specific PCR screenings are carried out until plants that carry the rearrangement homozygously are identified. Using this protocol, overall rearrangement frequencies range between 0.03% and 0.5%, depending on the type of rearrangement. In total, it takes about 1 year to establish homozygous lines.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Cromossomos , Edição de Genes/métodos , Mutação , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
Nat Plants ; 7(5): 566-573, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958776

RESUMO

Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.


Assuntos
Sistemas CRISPR-Cas , Cromossomos de Plantas/genética , Produção Agrícola , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Biologia Sintética , Produção Agrícola/métodos , Produtos Agrícolas/genética , Biologia Sintética/métodos
4.
J Exp Bot ; 72(2): 177-183, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258473

RESUMO

The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética , Genoma de Planta , Melhoramento Vegetal , Plantas/genética
5.
Nat Commun ; 11(1): 4418, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887885

RESUMO

Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas , Engenharia Genética/métodos , Recombinação Genética , Sistemas CRISPR-Cas , Inversão Cromossômica , Troca Genética , Melhoramento Vegetal/métodos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...