Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(25): 16297-16306, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34235300

RESUMO

Accelerated salt-induced deterioration occurs by frequent changes across the equilibrium relative humidity (RHeq). Therefore, knowledge of the actual RHeq of a salt mixture has a major impact on preventive conservation to ensure that the relative humidity (RH) does not cause a salt-phase transition. In addition, knowledge of the RHeq is essential in relation to in situ desalination as the dissolution of salt is an essential criterion to enable transport of salt (ions) in materials. For decades, it has been possible to determine the RHeq in salt mixtures with thermodynamic-based ECOS-Runsalt software. However, the ECOS-Runsalt model is challenged by the influence of kinetics along with some limitations in regard to possible ion types and combinations. A dynamic vapor sorption (DVS) instrument is used for the direct measurement of RHeq and to deduce knowledge on the physicochemical nonequilibrium process related to the phase changes in salt mixtures. The experimentally measured RHeq values in this study of NaCl-Na2SO4-NaNO3, NaNO3-Na2SO4, NaCl-NaNO3, NaCl-Na2SO4, and (NH4)2SO4-Na2SO4 are in agreement with values from the literature. A comparison with thermodynamically calculated results makes it probable that the phase transition for some salts is significantly influenced by nonequilibrium conditions. The present work bridges some of the existing gaps in regard to improving the accuracy of ECOS-Runsalt, including the effects of kinetics and the possible ions and combinations that may be found in situ. The proposed method makes it possible to determine a more representative RHeq in relation to real conditions for the improved treatment of salt-infected constructs.

2.
Rev Sci Instrum ; 87(5): 054101, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250441

RESUMO

We present a procedure for accurately calibrating a dynamic vapor sorption (DVS) instrument using single salts. The procedure accounts for and tailors distinct calibration tests according to the fundamental properties of each salt. Especially relevant properties influencing the calibration are the heat of solution, heat of condensation, and the kinetics connected to the salt phase transition, as these influence the microclimate surrounding the salts during calibration. All these issues were dealt with to obtain precise calibration results. The DVS instrument comprises two control modes to generate and measure the relative humidity (RH). Both control modes were separately examined and combined to overcome the shortcomings of each of the two control modes and thereby obtain the most accurate results. Repeated calibration testing with the single salts (LiCl, MgCl2, Mg(NO3)2, NaCl, and KNO3) enables five discrete sorption isotherm measurements within the range of 11%-93%RH. The equilibrium RH of the solution for LiCl, MgCl2, Mg(NO3)2, NaCl, and KNO3 was determined with a standard deviation of 0.06%-0.15% (0.45% for KNO3) RH. By comparing the measured calibration values with the well-known equilibrium RH of each salt solution, the presented method's results are both accurate with significant agreement and precise with small variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...