Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(7): 074502, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183081

RESUMO

We apply field-cycling (FC) 31P nuclear magnetic resonance (NMR) to access the reorientational susceptibility of two glass formers, m-tricresyl phosphate (m-TCP) and tri-butyl phosphate (TBP). Although FC 31P studies are still instrumentally demanding, together with FC 1H data, they provide site-resolved information. A crossover from dipolar relaxation at low frequencies to relaxation determined by chemical shift anisotropy at high frequencies and probed by conventional NMR is identified. A comparison is made between dielectric (DS) and depolarized light scattering (DLS) relaxation spectra demonstrating similar behavior close to Tg, including an excess wing contribution for m-TCP. The time constants of 31P NMR and DLS, probing the molecular core, agree. The 1H data monitoring the dynamics of the phenyl groups yield slightly shorter correlation times. At high temperatures, the DS relaxation spectra show a bimodal character: a fast component in agreement with 1H data, and a slow component much slower than 31P NMR and DLS suggest. We discuss the possible origins of the slow component. All time constants tend to merge toward Tg. Hence, we propose that site-specific dynamics disappear and a common α-relaxation establishes near Tg. In addition, we compare the diffusion coefficient D(T) determined by FC and static field gradient 1H NMR. Concerning TBP, we present FC 31P data of both α- and ß-processes. Regarding the latter, we compare the DS and NMR susceptibility on absolute scale, yielding a significantly stronger ß-relaxation in the 31P NMR spectra.

2.
J Phys Chem B ; 125(49): 13519-13532, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34860530

RESUMO

Spin-lattice relaxation rates R1(ω,T), probed via high-field and field-cycling nuclear magnetic resonance (NMR), are used to test the validity of frequency-temperature superposition (FTS) for the reorientation dynamics in viscous liquids. For several liquids, FTS is found to apply so that master curves can be generated. The susceptibility spectra are highly similar to those obtained from depolarized light scattering (DLS) and reveal an excess wing. Where FTS works, two approaches are suggested to access the susceptibility: (i) a plot of deuteron R1(T) vs the spin-spin relaxation rate R2(T) and (ii) a plot of R1(T) vs an independently measured reference time τref(T). Using single-frequency scans, (i) allows one to extract the relaxation stretching as well as the NMR coupling constant. Surveying 26 data sets, we find Kohlrausch functions with exponents 0.39 < ßK ≤ 0.67. Plots of the spin-spin relaxation rate R2─rescaled by the NMR coupling constant─as a function of temperature allow one to test how well site-specific NMR relaxations couple to a given reference process. Upon cooling of flexible molecule liquids, the site-specific dynamics is found to merge, suggesting that near Tg the molecules reorient essentially as a rigid entity. This presents a possible resolution for the much lower stretching parameters reported here at high temperatures that contrast with the ones that were reported to be universal in a recent DLS study close to Tg. Our analysis underlines that deuteron relaxation is a uniquely powerful tool to probe single-particle reorientation.


Assuntos
Temperatura Alta , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Temperatura , Viscosidade
3.
J Chem Phys ; 154(12): 124503, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810699

RESUMO

We combine field-cycling (FC) relaxometry and molecular dynamics (MD) simulations to study the rotational and translational dynamics associated with the glassy slowdown of glycerol. The 1H NMR spin-lattice relaxation rates R1(ω) probed in the FC measurements for different isotope-labelled compounds are computed from the MD trajectories for broad frequency and temperature ranges. We find high correspondence between experiment and simulation. Concerning the rotational motion, we observe that the aliphatic and hydroxyl groups show similar correlation times but different stretching parameters, while the overall reorientation associated with the structural relaxation remains largely isotropic. Additional analysis of the simulation results reveals that transitions between different molecular configurations are slow on the time scale of the structural relaxation at least at sufficiently high temperatures, indicating that glycerol rotates at a rigid entity, but the reorientation is slower for elongated than for compact conformers. The translational contribution to R1(ω) is well described by the force-free hard sphere model. At sufficiently low frequencies, universal square-root laws provide access to the molecular diffusion coefficients. In both experiment and simulation, the time scales of the rotational and translational motions show an unusually large separation, which is at variance with the Stokes-Einstein-Debye relation. To further explore this effect, we investigate the structure and dynamics on various length scales in the simulations. We observe that a prepeak in the static structure factor S(q), which is related to a local segregation of aliphatic and hydroxyl groups, is accompanied by a peak in the correlation times τ(q) from coherent scattering functions.

4.
J Chem Phys ; 152(18): 184904, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414263

RESUMO

A self-consistent approximation beyond the Redfield limit and without using the Anderson-Weiss approximation for the Free Induction Decay (FID) of deuteron spins belonging to polymer chains undergoing reptation is formulated. The dynamical heterogeneity of the polymer segments created by the end segments is taken into account. Within an accuracy of slow-changing logarithmic factors, FID can be qualitatively described by a transition from an initial pseudo-Gaussian to a stretched-exponential decay at long times. With an increase in observation time, the contribution from end effects to the FID increases. In the regime of incoherent reptation, contributions to the FID from central segments yield an exponent of 1/4 for the stretched decay and contributions from end segments yield an exponent of 3/16. In the regime of coherent reptation, the central segments generate a stretching exponent of 1/2, whereas the end segments contribute with an exponent of 1/4. These predictions are shown to be in qualitative agreement with the experimental FIDs of perdeuterated poly(ethylene oxide) with molecular masses of 132 kg/mol and 862 kg/mol.

5.
J Phys Chem B ; 124(8): 1557-1570, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31967826

RESUMO

We present a quantitative description of the proton spin-lattice relaxation rate R1(T,ω) of glycerol including temperatures from 191 to 360 K and a frequency range 10 kHz < ω/2π < 20 MHz covered by the field-cycling technique. The analysis encompasses the data compiled by Noack and co-workers in 1971, so far, the most complete data set (10 kHz > ω/2π < 117 MHz). Applying frequency-temperature superposition, master curves are constructed extending over 15 decades in frequency/time. They are described by contributions reflecting translational and rotational dynamics mediated by inter- and intramolecular relaxation pathways. The rotational part of the spectral density/susceptibility shows high similarity with those reported by dielectric spectroscopy or photon correlation spectroscopy (PCS). In addition to a Cole-Davidson-like peak, a high-frequency "excess wing" has to be accounted for. Quantitative agreement with the PCS susceptibility is found which probes the same order of the rotational correlation function. The translational contribution is reproduced by applying the force-free hard sphere model, describing diffusion of dipolarly coupled spin systems. Rotational and translational time constants are compared to those from other techniques. Our approach is paradigmatic for the analysis of spin relaxation in glass-forming liquids. It also solves long-standing deficiencies regarding the analyses of deuteron relaxation. Moreover, the case of glycerol is special as its large separation of translation and rotation dynamics, probably because of its hydrogen bond network, is not found in nonassociated liquids.

6.
J Chem Phys ; 151(22): 224507, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837662

RESUMO

The dynamics of cyanoadamantane (CN-ADA) in its plastically crystalline phase encompasses three processes: overall tumbling of the rigid molecule, rotation around the molecular symmetry axis, and vacancy diffusion. This makes CN-ADA a prototypical case to be studied by field-cycling as well as by conventional NMR relaxometry. Data are collected from 430 K down to about 4 K and frequencies in the range of 10 kHz-56 MHz are covered. The overall tumbling is interpreted as a cooperative jump process preceding along the orthogonal axis of the cubic lattice and exhibiting a temperature independent non-Lorentzian spectral density. Consequently, a master curve is constructed, which yields model-independent correlation times, which agree well with those reported in the literature. It can be interpolated by a Cole-Davidson function with a width parameter ßCD = 0.83. The uniaxial rotation persisting in the glassy crystal (T < Tg = 170 K) is governed by a broad distribution of activation energies, g(E). In this case, the standard master curve construction applied for the overall tumbling, for example, fails, as the actually probed distribution of correlation times G(ln τ) strongly changes with temperature. We suggest a scaling method that generally applies for the case that a relaxation process is determined by a distribution of thermally activated processes. Frequency as well as temperature dependence of the relaxation rate can be used to reconstruct g(E). In addition, g(E) is extracted from the proton line-shape, which was measured down to 4 K. Vacancy diffusion governs the relaxation dispersion at highest temperatures; yet, a quantitative analysis is not possible due to instrumental limitations.

7.
Eur Phys J E Soft Matter ; 42(11): 143, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31773406

RESUMO

We investigate the component dynamics in asymmetric binary glass formers. Focusing on the dielectric spectra of the high-Tg components m-tricresyl phosphate and quinaldine mixed with toluene as low-Tg component, the broadend spectra cannot be described by Kohlrausch or Cole-Davidson (CD) functions. Instead, we apply a generalized CD function which allows to control the width of the susceptibility independently of its high-frequency flank. The spectra show a common broadening and failure of the frequency-temperature superposition with increasing toluene concentration. This is confirmed by stimulated echo experiments showing an increased stretching of the probed orientational correlation function. In analogy to the definition of Tg, we consider "isodynamic points". For each component, a different but linear concentration dependence of 1/Tiso is revealed, indicating different time scales. Qualitativly, we do not find significant differences for the present mixtures with Tg-contrasts of 63-89K compared to those with larger Tg-contrast ( [Formula: see text] K): Whereas the high-Tg component shows relaxation features similar to those of neat glass formers, yet, with "atypical" weak relaxation broadening, the faster low-Tg component displays pronounced dynamic heterogeneities. This is supported by scrutinizing NMR relaxation data of several mixtures investigated previously as a function of concentration. A universal evolution of the dynamics of the high-Tg as well as the low-Tg component is suggested for mixtures with high [Formula: see text]Tg .

8.
J Chem Phys ; 149(4): 044902, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068172

RESUMO

Viscoelastic response in terms of the complex shear modulus G*(ω) of the linear polymers poly(ethylene-alt-propylene), poly(isoprene), and poly(butadiene) is studied for molar masses (M) from 3k up to 1000k and over a wide temperature range starting from the glass transition temperature Tg (174 K-373 K). Master curves G'(ωτα) and G″(ωτα) are constructed for the polymer-specific relaxation. Segmental relaxation occurring close to Tg is independently addressed by single spectra. Altogether, viscoelastic response is effectively studied over 14 decades in frequency. The structural relaxation time τα used for scaling is taken from dielectric spectra. We suggest a derivative method for identifying the different power-law regimes and their exponents along G″(ωτα) ∝ ωε″. The exponent ε″ = ε″(ωτα) ≡ d ln G″(ωτα)/d ln(ωτα) reveals more details compared to conventional analyses and displays high similarity among the polymers. Within a simple scaling model, the original tube-reptation model is extended to include contour length fluctuations (CLFs). The model reproduces all signatures of the quantitative theory by Likhtman and McLeish. The characteristic times and power-law exponents are rediscovered in ε″(ωτα). The high-frequency flank of the terminal relaxation closely follows the prediction for CLF (ε″ = -0.25), i.e., G″(ω) ∝ ω-0.21±0.02. At lower frequencies, a second regime with lower exponent ε″ is observed signaling the crossover to coherent reptation. Application of the full Likhtman-McLeish calculation provides a quantitative interpolation of ε″(ωτα) at frequencies below those of the Rouse regime. The derivative method also allows identifying the entanglement time τe. However, as the exponent in the Rouse regime (ωτe > 1) varies along εeRouse = 0.66 ± 0.04 (off the Rouse prediction εRouse = 0.5) and that at ωτe < 1 is similar, only a weak manifestation of the crossover at τe is found at highest M. Yet, calculating τe/τα= (M/Mo)2, we find good agreement among the polymers when discussing ε″(ωτe). The terminal relaxation time τt is directly read off from ε″(ωτα). Plotting τt/τe as a function of Z = M/Me, we find universal behavior as predicted by the TR model. The M dependence crosses over from an exponent significantly larger than 3.0 at intermediate M to an exponent approaching 3.0 at highest M in agreement with previous reports. The frequency of the minimum in G″(ωτα) scales as τmin ∝ M1.0±0.1. An M-independent frequency marks the crossover to glassy relaxation at the highest frequencies. Independent of the amplitude of G″(ω), which may be related to sample-to-sample differences, the derivative method is a versatile tool to provide a detailed phenomenological analysis of the viscoelastic response of complex liquids.

9.
J Chem Phys ; 147(7): 074904, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830163

RESUMO

A thorough theoretical description of the recently suggested method [A. Lozovoi et al. J. Chem. Phys. 144, 241101 (2016)] based on the proton NMR dipolar-correlation effect allowing for the investigation of segmental diffusion in polymer melts is presented. It is shown that the initial rise of the proton dipolar-correlation build-up function, constructed from Hahn Echo signals measured at times t and t/2, contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean-squared displacement of polymer segments from different macromolecules, which provides an opportunity for an experimental study of segmental translational motions at the millisecond range that falls outside the typical range accessible by other methods, i.e., neutron scattering or NMR spin echo with the magnetic field gradients. A comparison with the other two proton NMR methods based on transverse spin relaxation phenomena, i.e., solid echo and double quantum resonance, shows that the initial rise of the build-up functions in all the discussed methods is essentially identical and differs only in numerical coefficients. In addition, it is argued that correlation functions constructed in the same manner as the dipolar-correlation build-up function can be applied for an experimental determination of a mean relaxation rate in the case of systems possessing multi-exponential magnetization decay.

10.
J Chem Phys ; 146(16): 164504, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456197

RESUMO

We investigate the secondary (ß-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a ß-relaxation (ß1 (SBC) and ß2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the ß-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the ß2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" ß1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τß2 are the same. Furthermore, T1(T) of TPP in the temperature region of the ß2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the ß-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one finds indications that the ß2-process starts to disintegrate. More and more TPP molecules get immobilized upon decreasing cTPP. We conclude that the ß-process is a cooperative process.

11.
J Chem Phys ; 146(16): 164503, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456204

RESUMO

In Paper I of this series of two papers we study the main relaxations of a binary glass former made of the low-Tg component tripropyl phosphate (TPP, Tg = 134 K) and of a specially synthesized (deuterated) spirobichroman derivative (SBC, Tg = 356 K) as the non-polymeric high-Tg component for the full concentration range. A large Tg contrast of the neat components is put into effect. Dielectric spectroscopy and different techniques of 2H nuclear magnetic resonance (NMR) as well as of 31P NMR spectroscopy allow to selectively probe the dynamics of the components. For all concentrations, two well separated liquid-like processes are identified. The faster α2-process associated with the low-Tg component TPP shows pronounced dynamic heterogeneities reflected by quasi-logarithmic correlation functions at low TPP concentrations. The slower α1-process involves the reorientation of the high-Tg component SBC. Its correlation function is Kohlrausch-like as in neat glass formers. The corresponding time constants and consequently their glass transition temperatures Tg1 and Tg2 differ more the lower the TPP concentration is. Plasticizer and anti-plasticizer effect, respectively, is observed. At low temperatures a situation arises that the TPP molecules isotropically reorient in an arrested SBC matrix (Tg2 < T < Tg1). At T < Tg2 the liquid-like reorientation of TPP gets arrested too. We find indications that a fraction of the TPP molecule takes part in the slower α1-process of the high-Tg component. All the features known from polymer-plasticizer systems are rediscovered in this non-polymeric highly asymmetric binary mixture. In Paper II [B. Pötzschner et al., J. Chem. Phys. 146, 164504 (2017)] we study the secondary (ß-) relaxations of the mixtures.

12.
J Magn Reson ; 277: 79-85, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258024

RESUMO

Field-Cycling (FC) NMR experiments were carried out at 1H Larmor frequencies down to about 3Hz. This could be achieved by fast switching a high polarizing magnetic field down to a low evolution field which is tilted with respect to the polarization field. Then, the low frequency Larmor precession of the nuclear spin magnetization about this evolution field is registered by means of FIDs in a high detection field. The crucial technical point of the experiment is the stabilization of the evolution field, which is achieved by compensating for temporal magnetic field fluctuations of all three spatial components. The paper reports on some other basic low field experiments such as the simultaneous measurement of the Larmor frequency and the spin-lattice relaxation time in such small fields as well as the irradiation of oscillating transversal magnetic field pulses at very low frequencies as a novel method for field calibration in low field FC NMR. The potential of low field FC is exemplified by the 1H relaxation dispersion of water at frequencies below about 2kHz stemming from the slow proton exchange process.

13.
J Chem Phys ; 144(24): 241101, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369489

RESUMO

A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

14.
J Phys Chem B ; 120(31): 7754-66, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27420118

RESUMO

Due to the single-particle character of the quadrupolar interaction in molecular systems, (2)H NMR poses a unique method for probing reorientational dynamics. Spin-lattice relaxation gives access to the spectral density, and its frequency dependency can be monitored by field-cycling (FC) techniques. However, most FC NMR studies employ (1)H; the use of (2)H is still rare. We report on the application of (2)H FC NMR for investigating the dynamics in molecular liquids and polymers. Commercial as well as home-built relaxometers are employed accessing a frequency range from 30 Hz to 6 MHz. Due to low gyromagnetic ratio, high coupling constants, and finite FC switching times, current (2)H FC NMR does not reach the dispersion region in liquids (toluene and glycerol), yet good agreement with the results from conventional high-field (HF) relaxation studies is demonstrated. The pronounced difference at low frequencies between (2)H and (1)H FC NMR data shows the relevance of intermolecular relaxation in the case of (1)H NMR. In the case of the polymers polybutadiene and poly(ethylene-alt-propylene), very similar relaxation dispersion is observed and attributed to Rouse and entanglement dynamics. Combination with HF (2)H relaxation data via applying frequency-temperature superposition allows the reconstruction of the full spectral density reflecting both polymer as well as glassy dynamics. Transformation into the time domain yields the reorientational correlation function C2(t) extending over nine decades in time with a long-time power law, C2(t) ∝ t(-0.45±0.05), which does not conform to the prediction of the tube-reptation model, for which ∝ t(-0.25) is expected. Entanglement sets in below C2(t = τe) ≅ S(2) = 0.001, where τe is the entanglement time and S the corresponding order parameter. Finally, we discuss the future prospects of the (2)H FC NMR technique.

15.
J Chem Phys ; 143(15): 154506, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26493914

RESUMO

We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of (1)H nuclear magnetic resonance (NMR), (31)P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg 1 and Tg 2. The slower one is attributed to the high-Tg component (α1-process), and the faster one is related to the m-TCP molecules (α2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α1-process. While the α1-relaxation only weakly broadens upon adding m-TCP, the α2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations-as probed by (31)P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg 1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D (31)P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτα 2). At Tg 1 a crossover is found for the temperature dependence of (mean) τα 2(T) from non-Arrhenius above to Arrhenius below Tg 1 which is attributed to intrinsic confinement effects. This "fragile-to-strong" transition also leads to a re-decrease of Tg 2(cm - TCP) at low concentration cm - TCP, i.e., a maximum is observed in Tg 2(cm - TCP) while Tg 1(cm - TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems.

16.
J Chem Phys ; 142(3): 034503, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612716

RESUMO

Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the (1)H spin-lattice relaxation rate, R1ω=T1(-1)ω, is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R1ω,x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

17.
J Chem Phys ; 141(4): 044511, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084930

RESUMO

Depolarized light scattering spectra of eight molecular liquids as obtained from applying tandem-Fabry-Pérot interferometry and double monochromator are analyzed in the frame work of the mode coupling theory (MCT). The susceptibility spectra are fitted to the numerical solution of the schematic F12 model of MCT and the validity of the asymptotic laws is discussed. The model is able to quantitatively describe the spectra up to the boiling point, where the main (structural) relaxation and the contribution of the microscopic (vibrational) dynamics essentially merge, and down to the moderately super-cooled liquid where glassy dynamics establishes. The changes of the spectra with temperature are mapped to only two control parameters, which show a smooth variation with temperature. Strong correlation between experimental stretching parameters and extrapolated values from the model is found. The numerical solutions are extrapolated down to Tc, where the asymptotic scaling laws can be applied. Although the spectra apparently follow scaling relations, the application of the asymptotic laws usually overestimates Tc by up to 12 K. In all the cases, the experimental spectra are outside the applicability regime of the asymptotic laws. This is explained by more or less strong vibrational contributions. Within a phenomenological approach which extends the spectral analysis down to Tg and which allows for separating fast and slow dynamics, the strength of the fast dynamics 1 - frel is revealed. It shows the cusp-like anomaly predicted by MCT; yet, the corresponding critical temperature is significantly higher than that derived from the F12 model. In addition, we demonstrate that close to Tg, the susceptibility minimum is controlled by the interplay of the excess wing and the fast dynamics contribution.

18.
J Chem Phys ; 140(24): 244509, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985656

RESUMO

Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.


Assuntos
Imidazóis/química , Termodinâmica , Difusão , Líquidos Iônicos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
19.
J Phys Chem B ; 118(25): 7108-18, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24857268

RESUMO

Depolarized light scattering (DLS) spectra of a series of 16 molecular and 6 room temperature ionic liquids are investigated by applying tandem-Fabry-Pérot interferometry, double monochromator, and photon correlation spectroscopy. Temperatures up to well above the melting point, in some cases, even up to the boiling point, are covered, and all liquids can be supercooled. The accessed time constants are between 1 ps and 10 ns; in some cases, even longer times are reached. The susceptibility spectra and likewise the corresponding reorientational correlation functions are characterized by stretching parameter ß(CD) (0.32-0.80) for the long-time decay (α-process), strength of fast dynamics 1 - f, and time scale at shortest times expressed by k(B)T/I* with the apparent quantity I* reflecting essentially inertia effects. An additional (intermediate) power-law regime (or excess wing in the frequency domain) between fast dynamics and the α-process has to be taken into account. For a given system the spectral parameters are virtually temperature independent up to the boiling point, i.e., frequency-temperature superposition applies for the α-process. Among the liquids, the quantity I* correlates with molecular mass, and the larger 1 - f, the smaller the inertial quantity I*. No correlation among 1 - f and ß(CD) is revealed. Testing for correlation of ß(CD) or 1 - f with parameters describing the temperature dependence of the correlation time τ(α), namely, high-temperature activation energy E(∞), fragility m, or glass transition temperature T(g), no significant correlation is found. Regarding molecular vs ionic liquids, no relevant difference in the evolution of their DLS spectra is observed.

20.
J Chem Phys ; 140(17): 174504, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811643

RESUMO

Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.


Assuntos
Nanopartículas de Magnetita/química , Prótons , Soluções/química , Difusão , Compostos Férricos/química , Fenômenos Físicos , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...