Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(14): 3811-3824, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856345

RESUMO

Light absorption by chromophoric dissolved organic matter (CDOM) in the ocean is often measured using liquid waveguide capillary cells coupled to spectral array detectors. This type of optical setup is affected by several sources of uncertainties related to the waveguide and the detector. Uncertainties from the waveguide arise from errors in the effective path length and the effects of water salinity, while errors related to the detector are due to the non-linearity in the response, internal stray light, and wavelength accuracy. Here, uncertainties in the measurements of the spectral absorption coefficient of CDOM due to the optical setup itself were investigated in detail. The related systematic errors were very often significant (2-15%) and larger than expected from simple measurement uncertainty (±1%). However, they can be corrected by characterizing the detector's response for non-linearity and stray light, regularly performing calibrations for the detector's wavelength response, and routinely measuring the waveguide's effective path length. Including such corrections and timely calibrations reduces the uncertainties related to the spectrophotometric measurements to about ±2%. Uncertainties related to the necessary handling of samples are not included here.

2.
Opt Express ; 31(6): 10512-10524, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157596

RESUMO

Remote-sensing reflectance, Rrs(λ, θ, Δϕ, θs), contains the spectral color information of the water body below the sea surface and is a fundamental parameter to derive satellite ocean color products such as chlorophyll-a, diffuse light attenuation, or inherent optical properties. Water reflectance, i.e., spectral upwelling radiance, normalized by the downwelling irradiance, can be measured under- or above-water. Several models to extrapolate this ratio from underwater "remote-sensing ratio", rrs(λ), to the above-water Rrs, have been proposed in previous studies, in which the spectral dependency of water refractive index and off-nadir viewing directions have not been considered in detail. Based on measured inherent optical properties of natural waters and radiative transfer simulations, this study proposes a new transfer model to spectrally determine Rrs from rrs for different sun-viewing geometries and environmental conditions. It is shown that, compared to previous models, ignoring spectral dependency leads to a bias of ∼2.4% at shorter wavelengths (∼400 nm), which is avoidable. If nadir-viewing models are used, the typical 40°-off nadir viewing geometry will introduce a difference of ∼5% in Rrs estimation. When the solar zenith angle is higher than 60°, these differences of Rrs have implications for the downstream retrievals of ocean color products, e.g., > 8% difference for phytoplankton absorption at 440 nm and >4% difference for backward particle scattering at 440 nm by the quasi-analytical algorithm (QAA). These findings demonstrate that the proposed rrs-to-Rrs model is applicable to a wide range of measurement conditions and provides more accurate estimates of Rrs than previous models.

3.
Appl Opt ; 59(33): 10554-10564, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361999

RESUMO

Light absorption by in-water suspended natural particles in the near-infrared radiation (NIR; 780-3000 nm) region has received little attention. Minerogenic matter is thought to be one source for NIR light absorption in aquatic environments. Here, mass-specific particulate light absorption coefficients of several particulate single minerals and mineral samples for the spectral range of 200-2500 nm are presented. The current methodology allows very sensitive measurements of particle suspension with a detection limit of about 2×10-6m2g-1 for the mass-specific absorption coefficient. Except for one, all mineral materials examined possessed significant light absorption throughout the full spectral range considered. The spectra revealed absorption features of specific elements (like iron) and from water structures (H2O, O-H bonds) in the mineral or crystal structure that have been known from reflectance measurements of minerals. The specific absorption in the NIR was as high as 0.02m2g-1 for laterite earths samples, but also below the detection limit for a steatite sample in a narrow spectral region (1600-1800 nm). The specific absorption by mineral particles in the NIR was, hence, highly variable from strong absorbing black minerals (magnetite) to low absorbing white clays. The information in the absorption coefficient spectrum can be used not only to identify specific mineral in natural particle assemblages but also to quantify their contribution to total particulate absorption in the NIR.

4.
Opt Express ; 26(19): 24384-24402, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469558

RESUMO

The nature and magnitude of measurement uncertainties (precision and accuracy) associated with two approaches for measuring absorption by turbid waters (b(532 nm) ranging from 0.20 m-1 to 22.89 m-1) are investigated here: (a) point source integrating cavity absorption meters (PSICAM), and (b) reflective tube absorption meters (AC-9 and AC-s - both WET Labs Inc., USA). Absolute measurement precision at 440 nm was quantified using standard deviations of triplicate measurements for the PSICAM and de-trended, bin averaged time series for the AC-9/s, giving comparable levels (< 0.006 m-1) for both instruments. Using data collected from a wide range of UK coastal waters, PSICAM accuracy was assessed by comparing both total non-water absorption and absorption by coloured dissolved organic material (CDOM) measured on discrete samples by two independent PSICAMs. AC-9/s performance was tested by comparing total non-water absorption measured in situ by an AC-9 and an AC-s mounted on the same frame. Results showed that the PSICAM outperforms AC-9/s instruments with regards to accuracy, with average spread in the PSICAM total absorption data of 0.006 m-1 (RMSE) compared to 0.028 m-1 for the AC-9/s devices. Despite application of a state of the art scattering correction method, the AC-9/s instruments still tend to overestimate absorption compared to PSICAM data by on average 0.014 m-1 RMSE (AC-s) and 0.043 m-1 RMSE (AC-9). This remaining discrepancy can be largely attributed to residual limitations in the correction of AC-9/s data for scattering effects and limitations in the quality of AC-9/s calibration measurements.

5.
Opt Express ; 26(14): A678-A696, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114057

RESUMO

Satellite remote sensing of chlorophyll a concentration (Chl-a) in the Arctic Ocean is spatially and temporally limited and needs to be supplemented and validated with substantial volumes of in situ observations. Here, we evaluated the capability of obtaining highly resolved in situ surface Chl-a using underway spectrophotometry operated during two summer cruises in 2015 and 2016 in the Fram Strait. Results showed that Chl-a measured using high pressure liquid chromatography (HPLC) was well related (R2 = 0.90) to the collocated particulate absorption line height at 676 nm obtained from the underway spectrophotometry system. This enabled continuous surface Chl-a estimation along the cruise tracks. When used to validate Chl-a operational products as well as to assess the Chl-a algorithms of the aqua moderate resolution imaging spectroradiometer (MODIS-A) and Sentinel-3 Ocean Land Color Imager (OLCI) Level 2 Chl-a operational products, and from OLCI Level 2 products processed with Polymer atmospheric correction algorithm (version 4.1), the underway spectrophotometry based Chl-a data sets proved to be a much more sufficient data source by generating over one order of magnitude more match-ups than those obtained from discrete water samples. Overall, the band ratio (OCI, OC4) Chl-a operational products from MODIS-A and OLCI as well as OLCI C2RCC products showed acceptable results. The OLCI Polymer standard output provided the most reliable Chl-a estimates, and nearly as good results were obtained from the OCI algorithm with Polymer atmospheric correction method. This work confirms the great advantage of the underway spectrophotometry in enlarging in situ Chl-a data sets for the Fram Strait and improving satellite Chl-a validation and Chl-a algorithm assessment over discrete water sample analysis in the laboratory.

6.
Appl Opt ; 57(7): 1705-1716, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522024

RESUMO

A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (nr) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and nr isolines where each particle is assigned the diameter and nr values of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known nr, and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC nr values were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population.

7.
Opt Express ; 25(24): A1079-A1095, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29220986

RESUMO

Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m-1 and a precision of about 0.0025 m-1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

8.
Opt Express ; 25(24): A1139-A1153, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29220991

RESUMO

In situ absorption measurements collected with a WET Labs ac-9 employing a reflective tube approach were scatter corrected using several possible methods and compared to reference measurements made by a PSICAM to assess performance. Overall, two correction methods performed best for the stations sampled: one using an empirical relationship between the ac-9 and PSICAM to derive the scattering error (ε) in the near-infrared (NIR), and one where ε was independently derived from concurrent measurements of the volume scattering function (VSF). Application of the VSF-based method may be more universally applicable, although difficult to routinely apply because of the lack of commercially available VSF instrumentation. The performance of the empirical approach is encouraging as it relies only on the ac meter measurement and may be readily applied to historical data, although there are inevitably some inherent assumptions about particle composition that hinder universal applicability. For even the best performing methods, residual errors of 20% or more were commonly observed for many water types. For clear ocean waters, a conventional baseline subtraction with the assumption of negligible near-IR absorption performed as well or better than the above methods because propagated uncertainties were lower than observed with the proportional method.

9.
Appl Opt ; 56(22): 6357-6366, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047835

RESUMO

Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.

10.
PLoS One ; 12(1): e0170706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107539

RESUMO

The detection and prediction of changes in coastal ecosystems require a better understanding of the complex physical, chemical and biological interactions, which involves that observations should be performed continuously. For this reason, there is an increasing demand for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a broad range of scales. In this context, this study seeks to explore the potential of beam attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmissometer, for assessing temporal and spatial patterns in the complex estuarine waters of Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the spectral beam attenuation coefficient was assessed and linked with different biogeochemical variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration, TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter (CDOM) has an important influence on the beam attenuation spectral shape and complementary measurements of particle size distribution were available, the beam attenuation spectral slope was used to analyze the CDOM content. Results were successfully compared with optical and biogeochemical variables from laboratory analysis of collocated water samples, and statistically significant correlations were found between the attenuation proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted the potential of high-frequency beam attenuation measurements as a simple, continuous and cost-effective approach for rapid detection of changes and patterns in biogeochemical properties in complex coastal environments.


Assuntos
Monitoramento Ambiental/métodos , Clorofila/análise , Clorofila A , Análise Custo-Benefício , Ecossistema , Monitoramento Ambiental/economia , Mar Mediterrâneo , Fenômenos Ópticos , Água do Mar/química
11.
Front Microbiol ; 8: 2369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375483

RESUMO

The sea surface microlayer (SML) is the thin boundary layer between the ocean and the atmosphere, making it important for air-sea exchange processes. However, little is known about what controls organic matter composition in the SML. In particular, there are only few studies available on the differences of the SML of various oceanic systems. Here, we compared the organic matter and neuston species composition in the SML and the underlying water (ULW) at 11 stations with varying distance from the coast in the Peruvian upwelling regime, a system with high emissions of climate relevant trace gases, such as N2O and CO2. In the open ocean, organic carbon, and amino acids were highly enriched in the SML compared to the ULW. The enrichment decreased at the coastal stations and vanished in the upwelling regime. At the same time, the degradation of organic matter increased from the open ocean to the upwelling stations. This suggests that in the open ocean, upward transport processes or new production of organic matter within the SML are faster than degradation processes. Phytoplankton was generally not enriched in the SML, one group though, the Trichodesmium-like TrL (possibly containing Trichodesmium), were enriched in the open ocean but not in the upwelling region indicating that they find a favorable habitat in the open ocean SML. Our data show that the SML is a distinct habitat; its composition is more similar among different systems than between SML and ULW of a single station. Generally the enrichment of organic matter is assumed to be reduced when encountering low primary production and high wind speeds. However, our study shows the highest enrichments of organic matter in the open ocean which had the lowest primary production and the highest wind speeds.

12.
Opt Express ; 24(22): 24805-24823, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828423

RESUMO

Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, ß, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both ß and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

13.
Opt Express ; 24(13): 14036-52, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410565

RESUMO

Optical closure using radiative transfer simulations can be used to determine the consistency of in situ measurements of inherent optical properties (IOPs) and radiometry. Three scattering corrections are applied to in situ absorption and attenuation profile data for a range of coastal and oceanic waters, but are found to have only very limited impact on subsequent closure attempts for these stations. Best-fit regressions on log-transformed measured and modelled downwards irradiance, Ed, and upwards radiance, Lu, profiles have median slopes between 0.92 - 1.24, revealing a tendency to underestimate Ed and Lu with depth. This is only partly explained by non-inclusion of fluorescence emission from CDOM and chlorophyll in the simulations. There are several stations where multiple volume scattering function related data processing steps perform poorly which suggests the potential existence of unresolved features in the modelling of the angular distribution of scattered photons. General optical closure therefore remains problematic, even though there are many cases in the data set where the match between measured and modelled radiometric data is within 25% RMS%E. These results are significant for applications that rely on optical closure e.g. assimilating ocean colour data into coupled physical-ecosystem models.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Óptica e Fotônica , Clorofila/análise , Cor , Luz , Modelos Teóricos , Oceanos e Mares , Radiometria , Água do Mar
14.
Opt Express ; 24(2): A1-20, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832563

RESUMO

The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.


Assuntos
Absorção de Radiação , Filtração/instrumentação , Luz , Clorofila/análise , Congelamento
15.
Sensors (Basel) ; 15(9): 20967-89, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26343652

RESUMO

The recent development of inexpensive, compact hyperspectral transmissometers broadens the research capabilities of oceanographic applications. These developments have been achieved by incorporating technologies such as micro-spectrometers as detectors as well as light emitting diodes (LEDs) as light sources. In this study, we evaluate the performance of the new commercial LED-based hyperspectral transmissometer VIPER (TriOS GmbH, Rastede, Germany), which combines different LEDs to emulate the visible light spectrum, aiming at the determination of attenuation coefficients in coastal environments. For this purpose, experimental uncertainties related to the instrument stability, the effect of ambient light and derived temperature, and salinity correction factors are analyzed. Our results identify some issues related to the thermal management of the LEDs and the contamination of ambient light. Furthermore, the performance of VIPER is validated against other transmissometers through simultaneous field measurements. It is demonstrated that VIPER provides a compact and cost-effective alternative for beam attenuation measurements in coastal waters, but it requires the consideration of several optimizations.

16.
Opt Express ; 22(21): 25093-108, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401542

RESUMO

The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).


Assuntos
Absorção de Radiação , Luz , Salinidade , Temperatura , Água/química , Espectrofotometria Infravermelho
17.
Proc Natl Acad Sci U S A ; 110(51): 20633-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24248337

RESUMO

Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.


Assuntos
Carbono/metabolismo , Diatomáceas/fisiologia , Ecossistema , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/fisiologia , Silício/metabolismo , Regiões Antárticas , Evolução Biológica
18.
Nature ; 487(7407): 313-9, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22810695

RESUMO

Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence-although each with important uncertainties-lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Diatomáceas/fisiologia , Ferro/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Oceanos e Mares , Fatores de Tempo
19.
Appl Opt ; 51(9): 1336-51, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22441480

RESUMO

Determination of particulate absorption in natural waters is often made by measuring the transmittance of samples on glass-fiber filters with the so-called quantitative filter technique (QFT). The accuracy of this technique is limited due to variations in the optical properties of the sample/filter composite, and due to uncertainties in the path-length amplification induced by multiple scattering inside the filter. Some variations in the optical properties of the sample/filter composite can be compensated by additional measurements of the filter's reflectance (transmittance-reflectance method [T-R] [S. Tassan and G. M. Ferrari, Limnol. Oceanogr. 40, 1358 (1995)]). We propose a different, rarely used approach, namely to measure the filter's absorptance in the center of a large integrating sphere, to avoid problems with light losses due to scattering. A comparison with other QFTs includes a sensitivity study for different error sources and determination of path-length amplification factors for each measurement technique. Measurements with a point-source integrating-cavity absorption meter were therefore used to determine the true absorption. Filter to filter variability induced a much lower error in absorptance compared to a measured transmittance. This reduced error permits more accurate determination of the usually low absorption coefficient in the near IR spectral region. The error of the T-R method was lower than that of the transmittance measurement but slightly higher than that of an absorptance measurement. The mean path-length amplification was much higher for the absorptance measurement compared to the T-R method (4.50 versus 2.45) but was found to be largely independent of wavelength and optical density. With natural samples the path-length amplification was less variable for the absorptance measurement, reducing the overall error for absorption to less than ±14%, compared to ±25% for the T-R method.


Assuntos
Filtração/métodos , Luz , Nefelometria e Turbidimetria/métodos , Poluentes da Água/análise , Absorção , Cianobactérias , Diatomáceas , Água Doce/análise , Haptófitas , Tamanho da Partícula , Reprodutibilidade dos Testes , Espalhamento de Radiação , Água do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...