Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 676: 651-664, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051370

RESUMO

Global processes of urban growth lead to severe environmental impacts such as temperature increase with an intensification of the urban heat island effect, and hydrological changes with far reaching consequences for plant growth and human health and well-being. Urban trees can help to mitigate the negative effects of climate change by providing ecosystem services such as carbon storage, shading, cooling by transpiration or reduction of rainwater runoff. The extent of each ecosystem service is closely linked with the tree species as well as with a tree's age, size, structure and vitality. To evaluate the ecosystem services of urban trees, the process-based growth model CityTree was developed which is able to estimate not only tree growth but also the species-specific ecosystem services including carbon storage, transpiration and runoff, shading, and cooling by transpiration. The model was parametrized for the species small-leaved lime (Tilia cordata), robinia (Robinia pseudoacacia), plane (Platanus×acerifolia) and horse chestnut (Aesculus hippocastanum). The model validation for tree growth (stem diameter increment, coefficient of correlation=0.76) as well as for the water balance (transpiration, coefficient of correlation=0.92) seems plausible and realistic. Tree growth and ecosystem services were simulated and analyzed for Central European cities both under current climate conditions and for the future climate scenarios. The simulations revealed that urban trees can significantly improve the urban climate and mitigate climate change effects. The quantity of the improvements depends on tree species and tree size as well as on the specific site conditions. Such simulation scenarios can be a proper basis for planning options to mitigate urban climate changes in individual cities.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/métodos , Árvores/crescimento & desenvolvimento
2.
Plant Biol (Stuttg) ; 19(5): 709-719, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28644576

RESUMO

Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought.


Assuntos
Secas , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Picea/crescimento & desenvolvimento , Picea/fisiologia , Mudança Climática , Europa (Continente)
3.
Environ Pollut ; 196: 511-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25042482

RESUMO

The effect of long-term exposure of twice-ambient O(3) (2 × O(3)) on whole-tree nitrogen (N) uptake and partitioning of adult beech and spruce was studied in a mixed forest stand, SE-Germany. N uptake as (15)N tracer and N pools were calculated using N concentrations and biomass of tree compartments. Whole-tree N uptake tended to be lower under 2 × O(3) in both species compared to trees under ambient O(3) (1 × O(3)). Internal partitioning in beech showed significantly higher allocation of new N to roots, with mycorrhizal root tips and fine roots together receiving about 17% of new N (2 × O(3)) versus 7% (1 × O(3)). Conversely, in spruce, N allocation to roots was decreased under 2 × O(3). These contrasting effects on belowground N partitioning and pool sizes, being largely consistent with the pattern of N concentrations, suggest enhanced N demand and consumption of stored N with higher relevance for tree-internal N cycling in beech than in spruce.


Assuntos
Poluentes Atmosféricos/metabolismo , Fagus/metabolismo , Nitrogênio/metabolismo , Ozônio/toxicidade , Picea/metabolismo , Abies , Poluentes Atmosféricos/toxicidade , Biomassa , Fagus/efeitos dos fármacos , Alemanha , Nitrogênio/análise , Picea/efeitos dos fármacos , Pinus , Raízes de Plantas/química , Estações do Ano
4.
Int J Biometeorol ; 48(3): 109-18, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14564495

RESUMO

A phenology model for estimating the timings of bud burst--one of the most influential phenological phases for the simulation of tree growth--is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other--often more complex--phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.


Assuntos
Fagus/crescimento & desenvolvimento , Modelos Teóricos , Picea/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Temperatura , Árvores/crescimento & desenvolvimento , Adaptação Fisiológica , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...