Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830235

RESUMO

Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested-whole blood, dermal fibroblasts or saliva-but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to 'missing heritability' in developmental defects.


Assuntos
Variações do Número de Cópias de DNA , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/genética , Mutação , Crista Neural/metabolismo , Criança , Pré-Escolar , Sistema Nervoso Entérico/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Crista Neural/patologia , Análise de Sequência de DNA
2.
Gastroenterology ; 155(1): 118-129.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29601828

RESUMO

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS: We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS: Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS: In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas Hedgehog/genética , Doença de Hirschsprung/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Células COS , Chlorocebus aethiops , Família , Feminino , Predisposição Genética para Doença , Variação Genética , Células HEK293 , Humanos , Masculino , Morfolinos , Países Baixos , Linhagem , Isoformas de Proteínas , Proto-Oncogene Mas , Análise de Sequência de DNA , Transdução de Sinais , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...