Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 8: 339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303132

RESUMO

Pseudomonas aeruginosa employs 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone (HHQ) as quorum sensing signal molecules, which contribute to a sophisticated regulatory network controlling the production of virulence factors and antimicrobials. We demonstrate that Mycobacterium abscessusT and clinical M. abscessus isolates are capable of degrading these alkylquinolone signals. Genome sequences of 50 clinical M. abscessus isolates indicated the presence of aqdRABC genes, contributing to fast degradation of HHQ and PQS, in M. abscessus subsp. abscessus strains, but not in M. abscessus subsp. bolletii and M. abscessus subsp. massiliense isolates. A subset of 18 M. a. subsp. abscessus isolates contained the same five single nucleotide polymorphisms (SNPs) compared to the aqd region of the type strain. Interestingly, representatives of these isolates showed faster PQS degradation kinetics than the M. abscessus type strain. One of the SNPs is located in the predicted promoter region of the aqdR gene encoding a putative transcriptional regulator, and two others lead to a variant of the AqdC protein termed AqdCII, which differs in two amino acids from AqdCI of the type strain. AqdC, the key enzyme of the degradation pathway, is a PQS dioxygenase catalyzing quinolone ring cleavage. While transcription of aqdR and aqdC is induced by PQS, transcript levels in a representative of the subset of 18 isolates were not significantly altered despite the detected SNP in the promoter region. However, purified recombinant AqdCII and AqdCI exhibit different kinetic properties, with approximate apparent Km values for PQS of 14 µM and 37 µM, and kcat values of 61 s-1 and 98 s-1, respectively, which may (at least in part) account for the observed differences in PQS degradation rates of the strains. In co-culture experiments of P. aeruginosa PAO1 and M. abscessus, strains harboring the aqd genes reduced the PQS levels, whereas mycobacteria lacking the aqd gene cluster even boosted PQS production. The results suggest that the presence and expression of the aqd genes in M. abscessus lead to a competitive advantage against P. aeruginosa.

2.
J Clin Microbiol ; 52(1): 244-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197890

RESUMO

Mycobacterium abscessus, which consists of the two subspecies M. abscessus subspecies abscessus and M. abscessus subspecies bolletii, can produce rough or smooth colony morphologies. Here we analyzed 50 M. abscessus isolates cultured from the respiratory specimens of 34 patients, 28 (82%) of whom had cystic fibrosis (CF), with respect to their colony morphologies and antibiotic susceptibilities. The overall proportions of occurrences of the two morphotypes were similar, with specimens from 50% of the patients showing a rough and 38% showing a smooth morphotype. A total of 12% of the specimens from the patients showed both morphotypes simultaneously. At the subspecies level, the proportions of rough and smooth morphotypes differed substantially; 88% of rough morphotypes belonged to M. abscessus subspecies abscessus, and 85% of smooth morphotypes belonged M. abscessus subspecies bolletii. Inducible clarithromycin resistance due to the Erm(41) methylase, as well as high-level resistance to clarithromycin due to mutations within the rrl gene, occurred independently of the morphotype. The MIC50s of amikacin and cefoxitin were identical for the two morphotypes, whereas the MIC50s of tigecycline were 0.25 µg/ml for the rough morphotype and 2.0 µg/ml for the smooth morphotype. Our results show that the smooth morphotype was more dominant in respiratory specimens from CF patients than previously thought. With respect to resistance, colony morphology did not affect the susceptibility of Mycobacterium abscessus to the first-line antibiotics clarithromycin, amikacin, and cefoxitin.


Assuntos
Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium/isolamento & purificação , Mycobacterium/fisiologia , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Mycobacterium/crescimento & desenvolvimento , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...