Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(5): 2508-2518, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009695

RESUMO

Electrocatalytic conversion of carbon dioxide into high-value multicarbon (C2+ ) chemical feedstocks offers a promising avenue to liberate the chemical industry from fossil-resource dependence and eventually close the anthropogenic carbon cycle but is severely impeded by the lack of high-performance catalysts. To break the linear scaling relationship of intermediate binding and minimize the kinetic barrier of CO2 reduction reactions, ternary Cu-Au/Ag nanoframes were fabricated to decouple the functions of CO generation and C-C coupling, whereby the former is promoted by the alloyed Ag/Au substrate and the latter is facilitated by the highly strained and positively charged Cu domains. Thus, C2 H4 production in an H-cell and a flow cell occurred with high Faradic efficiencies of 69±5 and 77±2 %, respectively, as well as good electrocatalytic stability and material durability. In situ IR and DFT calculations unveiled two competing pathways for C2 H4 generation, of which direct CO dimerization is energetically favored.

2.
Adv Mater ; 32(52): e2006784, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33184955

RESUMO

Layered double hydroxides (LDHs) have been recognized as potent electrocatalysts for oxygen evolution reaction (OER), but are lacking in hydrogen evolution reaction (HER) activities due to the sluggish kinetics of water dissociation in alkaline medium. Herein, aiming to simultaneously bolster the HER and OER kinetics, a metal-organic framework (MOF) mediated topotactic transformation tactic is deployed to fabricate holey ternary CoFeNi LDHs on nickel foam, exposing polygonal mesopores with atomistic edge steps and lattice defects. The optimized catalyst requires only an external voltage of 1.49 V to afford the water splitting current density of 10 mA cm-2 apart from the superb electrolytic stability, far surpassing the benchmark Pt/C||RuO2 couple. More importantly, mechanistic investigations utilizing advanced spectroscopies in conjunction with density function theory (DFT) understandings unravel while the synergetic effect among under-coordinated metal centers lowers the energy barrier of water dissociation, Fe-doping enables further modulating the d-band density of states (DOS) of Co and Ni in favor of intermediates binding, thereby promoting the intrinsic HER activity. Operando Raman studies reveal negligible structural change of the LDHs during the HER process, whereas for OER the active sites can quickly turn into oxyhydroxides in the presence of lattice defects and under-coordinated metal centers.

3.
Nat Commun ; 10(1): 3782, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439841

RESUMO

Three-dimensional bimetallic nanoframes with high spatial diffusivity and surface heterogeneity possess remarkable catalytic activities owing to their highly exposed active surfaces and tunable electronic structure. Here we report a general one-pot strategy to prepare ultrathin octahedral Au3Ag nanoframes, with the formation mechanism explicitly elucidated through well-monitored temporal nanostructure evolution. Rich crystalline defects lead to lowered atomic coordination and varied electronic states of the metal atoms as evidenced by extensive structural characterizations. When used for electrocatalytic methanol oxidation, the Au3Ag nanoframes demonstrate superior performance with a high specific activity of 3.38 mA cm-2, 3.9 times that of the commercial Pt/C. More intriguingly, the kinetics of methanol oxidation on the Au3Ag nanoframes is counter-intuitively promoted by carbon monoxide. The enhancement is ascribed to the altered reaction pathway and enhanced OH- co-adsorption on the defect-rich surfaces, which can be well understood from the d-band model and comprehensive density functional theory simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...