Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(37): 24494-24495, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-30207340

RESUMO

Correction for 'Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2]-' by Julian Mars et al., Phys. Chem. Chem. Phys., 2017, 19, 26651-26661.

2.
Phys Chem Chem Phys ; 19(39): 26651-26661, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28960006

RESUMO

Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ1) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.

3.
Sci Adv ; 3(8): e1700738, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798959

RESUMO

Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.

4.
Phys Chem Chem Phys ; 16(27): 13866-74, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24894349

RESUMO

Alloy nanoparticles on oxide supports are widely used as heterogeneous catalysts in reactions involving oxygen. Here we discuss the oxidation behavior of Pd-Rh alloy nanoparticles on MgAl2O4(001) supports with a particle diameter from 6-11 nm. As an In situ tool, we employed high energy grazing incidence X-ray diffraction at a photon energy of 85 keV. We find that physical vapor deposited Pd-Rh nanoparticles grow epitaxially on MgAl2O4(001) with a truncated octahedral shape over the whole concentration range. During our systematic oxidation experiments performed at 670 K in the pressure range from 10(-3) to 0.1 mbar, we observe for Rh containing nanoparticles the formation of two different Rh oxide phases, namely RhO2 and a spinel-like Rh3O4 phase. PdO formation is only observed for pure Pd nanoparticles. This oxidation induced segregation behavior is also reflected in the oxidation induced enlargement of the average nanoparticle lattice parameter towards to value for pure Pd. Our results have ramifications for the phase separation behavior of alloy nanocatalysts under varying reducing and oxidizing environments.

5.
Phys Chem Chem Phys ; 15(22): 8470-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632389

RESUMO

Structural changes occurring in an Fe(72.5)Cu1Nb2Mo2Si(15.5)B7 alloy during a combination of constant rate heating (20 K min(-1)) and isothermal holding at 500 and 520 °C were investigated using in situ high-energy X-ray diffraction. We found that the ferromagnetic-to-paramagnetic transition of the amorphous phase is revealed as a change in the slope of the thermal expansion curve when heating a sample at a constant rate up to 520 °C. Real space analysis by means of the atomic pair distribution function (PDF) demonstrated that the rate and extent of the thermal expansion strongly depend on the interatomic separation. The PDF proved to be a reliable method for the description of crystallization kinetics. Further it allows determination of sizes of ultrafine nanocrystals with grain sizes well below 8 nm and thus makes observation of early stages of nanocrystallization possible. Following grain growth kinetics during isothermal annealing at 500 and 520 °C we found that the activation energy of the process is 357 ± 12 kJ mol(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...