Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501501

RESUMO

This work reports the comparison of heat-treated and non-heat-treated laminated object-manufactured (LOM) 3D-printed specimens from mechanical and morphological viewpoints. The study suggests that heat treatment of the FDM-printed specimen may have a significant impact on the material characteristics of the polymer. The work has been performed at two stages for the characterization of (a) non-heat-treated samples and (b) heat-treated samples. The results for stage 1 (non-heat-treated samples) suggest that the infill density: 70%, infill pattern: honeycomb, and six number of discs in a single LOM-manufactured sample is the optimized condition with a compression strength of 42.47 MPa. The heat treatment analysis at stage 2 suggests that a high temperature: 65 °C, low time interval: 10 min, works equally well as the low temperature: 55 °C, high time interval: 30 min. The post-heat treatment near Tg (65 °C) for a time interval of 10 min improved the compressive strength by 105.42%.

2.
Polymers (Basel) ; 14(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236014

RESUMO

Fused deposition modeling (FDM) printing of commercial and reinforced filaments is a proven and well-explored method for the enhancement of mechanical properties. However, little has hitherto been reported on the multi-material components, fused or laminated together into a single specimen by using the laminated object manufacturing (LOM) technique for sustainable/renewable polymers. TPU is one such durable and flexible, sustainable material exhibiting renewable and biocompatible properties that have been explored very less often in combination with the ABS polymer matrix in a single specimen, such as the LOM specimen. The current research work presents the LOM manufacturing of 3D-printed flexural specimens of two different, widely used polymers available viz. ABS and TPU and tested as per ASTM D790 standards. The specimens were made and laminated in three layers. They were grouped into two categories, namely ABS: TPU: ABS (ATA) and TPU: ABS: TPU (TAT), which are functionally graded, sandwiched structures of polymeric material. The investigation of the flexural properties, microscopic imaging, and porosity characteristics of the specimens was made for the above categories. The results of the study suggest that ATA-based samples held larger flexural strength than TAT laminated manufactured samples. A significant improvement in the peak elongation and break elongation of the samples was achieved and has shown a 187% increase in the break elongation. Similarly, for the TAT-based specimen, flexural strength was improved significantly from approximately 6.8 MPa to 13 MPa, which represents a nearly 92% increase in the flexural strength. The morphological testing using Tool Maker's microscopic analysis and porosity analysis has supported the observed trends of mechanical behavior of ATA and TAT samples.

3.
Polymers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33498984

RESUMO

The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.

4.
Sci Rep ; 9(1): 15763, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673118

RESUMO

This study investigates the capacity of the nano-indentation method in the mechanical characterization of a heterogeneous dental restorative nanocomposite using experimental and computational approaches. In this respect, Filtek Z350 XT was selected as a nano-particle reinforced polymer nanocomposite with a specific range of the particle size (50 nm to 4 µm), within the range of indenter contact area of the nano-indentation experiment. A Sufficient number of nano-indentation tests were performed in various locations of the nanocomposite to extract the hardness and elastic modulus properties. A hybrid computational-experimental approach was developed to examine the extracted properties by linking the internal behaviour and the global response of the nanocomposite. In the computational part, several representative models of the nanocomposite were created in a finite element environment to simulate the mechanism of elastic-plastic deformation of the nanocomposite under Berkovich indenter. Dispersed values of hardness and elastic modulus were obtained through the experiment with 26.8 and 48.5 percent average errors, respectively, in comparison to the nanocomposite properties, respectively. A disordered shape was predicted for plastic deformation of the equilateral indentation mark, representing the interaction of the particles and matrix, which caused the experiment results reflect the local behaviour of the nanocomposite instead of the real material properties.

5.
J Mech Behav Biomed Mater ; 66: 1-11, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825047

RESUMO

The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure.


Assuntos
Força Compressiva , Osso Cortical/fisiologia , Modelos Biológicos , Estresse Mecânico , Animais , Bovinos , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...