Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Bugs ; 2(2): 120-3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637001

RESUMO

Bio-based succinic acid is receiving increasing attention, as it could provide a cost-effective, ecologically sustainable alternative to the current petrochemical production process, thus promising a significantly higher market potential. The yeast Saccharomyces cerevisiae is a robust and well-established industrial production organism exhibiting an extraordinarily high acid- and osmotolerance. These features in conjunction with the sophisticated toolbox for genetic engineering make it particularly suitable for succinic acid production. The high tolerance towards acidity is a major advantage over previously established bacterial succinic acid production hosts, since it makes the use of neutralisation salts dispensable and thus enormously facilitates the downstream process. By constructing yeast strains capable of producing significant amounts of succinic acid, we have recently established S. cerevisiae as a promising host for succinic acid production. Our metabolic engineering strategy relied on the implementation of an oxidative production route using the glyoxylate cycle. We here discuss theoretical and practical aspects of oxidative and reductive succinic acid production routes in S. cerevisiae.


Assuntos
Bioengenharia/métodos , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Modelos Biológicos
2.
Appl Environ Microbiol ; 77(6): 1981-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257817

RESUMO

With the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds. Both SAK1 and HAP4 overexpressions led to the upregulation of glucose-repressed genes and to reduced by-product formation rates (ethanol and glycerol). SAK1 overexpression had a greater impact on growth rates than did HAP4 overexpression. Elevated transcript levels of SAK1, but not HAP4, resulted in increased biomass yields in batch cultures grown on glucose (aerobic and excess glucose) as well as on nonfermentable carbon sources. SAK1 overexpression, but not the combined overexpression of SAK1 and HAP4 or the overexpression of HAP4 alone, restored growth on ethanol in an sdh2 deletion strain. In glucose-grown shake flask cultures, the sdh2 deletion strain with SAK1 and HAP4 overexpression produced succinic acid at a titer of 8.5 g liter(-1) and a yield of 0.26 mol (mol glucose)(-1) within 216 h. We here report for the first time that a constitutively high level of expression of SAK1 alleviates glucose repression and shifts the fermentative/oxidative balance under both glucose-repressed and -derepressed conditions.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Fermentação/genética , Fermentação/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Metab Eng ; 12(6): 518-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20854924

RESUMO

The production of bio-based succinic acid is receiving great attention, and several predominantly prokaryotic organisms have been evaluated for this purpose. In this study we report on the suitability of the highly acid- and osmotolerant yeast Saccharomyces cerevisiae as a succinic acid production host. We implemented a metabolic engineering strategy for the oxidative production of succinic acid in yeast by deletion of the genes SDH1, SDH2, IDH1 and IDP1. The engineered strains harbor a TCA cycle that is completely interrupted after the intermediates isocitrate and succinate. The strains show no serious growth constraints on glucose. In glucose-grown shake flask cultures, the quadruple deletion strain Δsdh1Δsdh2Δidh1Δidp1 produces succinic acid at a titer of 3.62 g L(-1) (factor 4.8 compared to wild-type) at a yield of 0.11 mol (mol glucose)(-1). Succinic acid is not accumulated intracellularly. This makes the yeast S. cerevisiae a suitable and promising candidate for the biotechnological production of succinic acid on an industrial scale.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Bioengenharia , Biomassa , Meios de Cultura , Espaço Extracelular/metabolismo , Deleção de Genes , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glioxilatos/metabolismo , Microbiologia Industrial , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...