Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 103(3): 453-463, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22947861

RESUMO

To explore the initial stages of amyloid ß peptide (Aß42) deposition on membranes, we have studied the interaction of Aß42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (L(o)) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the L(o) state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5-5 mol%) than higher (10-20 mol%) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aß42 binding than L(o) ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of ß-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aß42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol% anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aß42 and membrane.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ar , Peptídeos beta-Amiloides/química , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Água/química
2.
J Mol Model ; 17(6): 1445-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20853123

RESUMO

The avian influenza H5N1 virus has emerged as an important pathogen, causing severe disease in humans and posing a pandemic threat. Substrate specificity is crucial for the virus to obtain the ability to spread from avian to human. Therefore, an investigation of the binding properties of ligands at the molecular level is important for understanding the catalytic mechanism of the avian influenza virus neuraminidase and for designing novel and specific inhibitors of H5N1 neuraminidase. Based on the available crystal structure of H5N1, we have characterized the binding properties between sialic acid, methyl 3'sialyllactoside, methyl 6'sialyllactoside and the H5N1 influenza virus neuraminidase using molecular docking and molecular dynamics simulations. Obtained molecular dynamics trajectories were analyzed in terms of ligand conformations, N1-ligand interactions, and in terms of loop flexibility. It was found that in the N1-SA complex the sialic acid ring undergoes a transition from the B(2,5) to the (2)C(5) conformation. However, in the N1-3SL and N1-6SL complexes sialic acid remained in the distorted boat conformation. The obtained results indicate that 3SL has only weak interactions with the 150-loop, whereas the N1-6SL complex shows strong interactions. Most of the differences arise from the various conformations around the glycosidic linkage, between the sialic acid and galactose, which facilitate the above interactions of 6SL with the enzyme, and as a consequence the interactions between the 150- and 430- loops. This finding suggests that the altered flexibility of loops in and around the active site is one of the reasons why the avian N1 preferentially cleaves sialic acid from α-(2-3)-Gal glycoconjugates over α-(2-6)-Gal. These molecular modeling results are consistent with available experimental results on the specificity of N1.


Assuntos
Virus da Influenza A Subtipo H5N1/enzimologia , Neuraminidase/química , Proteínas Virais/química , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Influenza Humana/tratamento farmacológico , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ácido N-Acetilneuramínico/química , Oligossacarídeos/química , Conformação Proteica , Propriedades de Superfície
3.
Biochemistry ; 49(40): 8779-93, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20825165

RESUMO

Predominantly, rice Os3BGlu7 operates as a ß-d-glucosidase (EC 3.2.1.21), while barley HvBII acts as a ß-d-mannosidase (EC 3.2.1.25). Saturation transfer difference nuclear magnetic resonance (STD NMR) and transferred nuclear Overhauser effect (trNOE) spectroscopy in conjunction with quantum mechanics/molecular mechanics (QM/MM) modeling and docking at the 6-31+G* level were used to investigate binding of S- and O-linked gluco- and manno-configured aryl-ß-d-glycosides to Os3BGlu7 and HvBII. Kinetic analyses with 4-nitrophenyl ß-d-thioglucoside (4NP-S-Glc) and 4-nitrophenyl ß-d-thiomannoside (4NP-S-Man) indicated that the inhibitions were competitive with apparent K(i) constants of 664 and 710 µM for Os3BGlu7 and 95 and 266 µM for HvBII, respectively. The STD NMR and trNOESY experiments revealed that 4NP-S-Glc and 4NP-S-Man bound weakly in (4)C(1) conformations to Os3BGlu7; 4NP-S-Glc adopted (3)S(5) (B(3,O)) or (1)S(3) ((1,4)B) conformations, and 4NP-S-Man preferred (4)C(1) geometry, when bound to HvBII. The QM modeling and docking, based on GLIDE scores, predicted that 4NP-O-Glc, 4NP-O-Man, and 4NP-S-Man bound preferentially in (1)S(3) geometries to both enzymes, contrary to 4NP-S-Glc that could also adopt a (4)C(1) conformation, although in a "flipped-down" ring position. The experimental and computational data suggested that in glycoside recognition and substrate specificity of Os3BGlu7 and HvBII, a combination of the following determinants is likely to play key roles: (i) the inherent conformational and spatial flexibilities of gluco- and manno-configured substrates in the enzymes' active sites, (ii) the subtle differences in the spatial disposition of active site residues and their capacities to form interactions with specific groups of substrates, and (iii) the small variations in the charge distributions and shapes of the catalytic sites.


Assuntos
Glicosídeos/metabolismo , Hordeum/enzimologia , Manosídeos/metabolismo , Oryza/enzimologia , beta-Glucosidase/metabolismo , beta-Manosidase/metabolismo , Glicosídeos/química , Hordeum/química , Manosídeos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oryza/química , Ligação Proteica , Especificidade por Substrato , beta-Glucosidase/química , beta-Manosidase/química
4.
Carbohydr Res ; 340(5): 1051-7, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15780269

RESUMO

The structure of a previously calculated transition state (TS) was used to design the [tetrahydro-2-(methylthio)furan-2-yl]methyl phosphate dianion (1) as a new scaffold for transition-state analogs of reactions catalyzed by the inverting glycosyltransferases. This scaffold contains relevant features of the donor and acceptor and represents a new type of potential inhibitors for these enzymes. Available conformational space of 1 was explored using DFT quantum chemical methods by means of two-dimensional potential-energy maps calculated as a function of Phi, Psi, and omega dihedral angles at the B3LYP/6-31+G* level. The calculated potential energy surfaces revealed the existence of several low-energy domains. Structures from these regions were refined at the 6-311++G** level and led to 14 conformers. The stability of conformers is influenced by their environment, and in aqueous solution two conformers dominate the equilibrium. A superposition of calculated conformers with the predicted TS structure revealed that the preferred conformers in solution nicely mimic structural features of the TS. These results imply that 1 has structural properties required to mimic the TS and therefore can be used as a scaffold for further development of TS-analog inhibitors for retaining glycosyltransferases.


Assuntos
Furanos/química , Glicosiltransferases/metabolismo , Organofosfatos/química , Simulação por Computador , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...