Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Gastroenterology ; 159(2): 575-590, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325086

RESUMO

BACKGROUND & AIMS: Studies are needed to determine the mechanism by which Barrett's esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis. METHODS: We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB. RESULTS: Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation. CONCLUSIONS: Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Carcinogênese/patologia , Neoplasias Esofágicas/patologia , Células Caliciformes/patologia , Receptores Notch/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Idoso , Animais , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Biópsia , Carcinogênese/genética , Diferenciação Celular/genética , Estudos Transversais , Modelos Animais de Doenças , Progressão da Doença , Mucosa Esofágica/citologia , Mucosa Esofágica/diagnóstico por imagem , Mucosa Esofágica/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Esofagoscopia , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Estudos Prospectivos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores Notch/genética , Transdução de Sinais
3.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833345

RESUMO

Fusobacterium nucleatum, a Gram-negative oral anaerobe, is a significant contributor to colorectal cancer. Using an in vitro cancer progression model, we discover that F. nucleatum stimulates the growth of colorectal cancer cells without affecting the pre-cancerous adenoma cells. Annexin A1, a previously unrecognized modulator of Wnt/ß-catenin signaling, is a key component through which F. nucleatum exerts its stimulatory effect. Annexin A1 is specifically expressed in proliferating colorectal cancer cells and involved in activation of Cyclin D1. Its expression level in colon cancer is a predictor of poor prognosis independent of cancer stage, grade, age, and sex. The FadA adhesin from F. nucleatum up-regulates Annexin A1 expression through E-cadherin. A positive feedback loop between FadA and Annexin A1 is identified in the cancerous cells, absent in the non-cancerous cells. We therefore propose a "two-hit" model in colorectal carcinogenesis, with somatic mutation(s) serving as the first hit, and F. nucleatum as the second hit exacerbating cancer progression after benign cells become cancerous. This model extends the "adenoma-carcinoma" model and identifies microbes such as F. nucleatum as cancer "facilitators".


Assuntos
Anexina A1/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Retroalimentação Fisiológica , Xenoenxertos , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Modelos Biológicos , Prognóstico , Ligação Proteica , Transdução de Sinais
4.
J Biomol Screen ; 18(5): 599-609, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23396314

RESUMO

A variety of G-protein-coupled receptor (GPCR) screening technologies have successfully partnered a number of GPCRs with their cognate ligands. GPCR-mediated ß-arrestin recruitment is now recognized as a distinct intracellular signaling pathway, and ligand-receptor interactions may show a bias toward ß-arrestin over classical GPCR signaling pathways. We hypothesized that the failure to identify native ligands for the remaining orphan GPCRs may be a consequence of biased ß-arrestin signaling. To investigate this, we assembled 10 500 candidate ligands and screened 82 GPCRs using PathHunter ß-arrestin recruitment technology. High-quality screening assays were validated by the inclusion of liganded receptors and the detection and confirmation of these established ligand-receptor pairings. We describe a candidate endogenous orphan GPCR ligand and a number of novel surrogate ligands. However, for the majority of orphan receptors studied, measurement of ß-arrestin recruitment did not lead to the identification of cognate ligands from our screening sets. ß-Arrestin recruitment represents a robust GPCR screening technology, and ligand-biased signaling is emerging as a therapeutically exploitable feature of GPCR biology. The identification of cognate ligands for the orphan GPCRs and the extent to which receptors may exist to preferentially signal through ß-arrestin in response to their native ligand remain to be determined.


Assuntos
Arrestinas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequenas/análise , beta-Arrestinas
5.
Methods Mol Biol ; 897: 181-203, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22674166

RESUMO

The recruitment of arrestins to activated 7TMRs results in the activation of alternative signaling pathways, quenching of G-protein activation, and coupling to clathrin-mediated endocytosis. The nearly ubiquitous involvement of arrestin in 7TMR signaling has spurred the development of several methods for monitoring this interaction in mammalian cells. Nonetheless, few maintain the reproducibility and precision necessary for drug discovery applications. Enzyme fragment complementation technology (EFC) is an emerging protein-protein interaction technology based on the forced complementation of a split enzyme that has proven to be highly effective in monitoring the formation of GPCR-arrestin complexes. In these systems, the target proteins are fused to two fragments of an enzyme that show little or no spontaneous complementation. Interaction of the two proteins forces the complementation of the enzyme, resulting in an enzymatic measure of the protein interaction. This chapter discusses the utility and methods involved in using the PathHunter ß-galactosidase complementation system to monitor arrestin recruitment and the advantages of exploiting this pathway in the characterization of 7TMR function.


Assuntos
Arrestinas/metabolismo , Descoberta de Drogas/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Humanos , Ligação Proteica , beta-Arrestinas , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...