Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679718

RESUMO

Delay-tolerant networks (DTNs) are networks where there is no immediate connection between the source and the destination. Instead, nodes in these networks use a store-carry-forward method to route traffic. However, approaches that rely on flooding the network with unlimited copies of messages may not be effective if network resources are limited. On the other hand, quota-based approaches are more resource-efficient but can have low delivery rates and high delivery delays. This paper introduces the Enhanced Message Replication Technique (EMRT), which dynamically adjusts the number of message replicas based on a node's ability to quickly disseminate the message. This decision is based on factors such as current connections, encounter history, buffer size history, time-to-live values, and energy. The EMRT is applied to three different quota-based protocols: Spray and Wait, Encounter-Based Routing (EBR), and the Destination-Based Routing Protocol (DBRP). The simulation results show that applying the EMRT to these protocols improves the delivery ratio, overhead ratio, and latency average. For example, when combined with Spray and Wait, EBR, and DBRP, the delivery probability is improved by 13%, 8%, and 10%, respectively, while the latency average is reduced by 51%, 14%, and 13%, respectively.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Simulação por Computador , Probabilidade
2.
Polymers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499265

RESUMO

Flexible substrates have become essential in order to provide increased flexibility in wearable sensors, including polymers, plastic, paper, textiles and fabrics. This study is to comprehensively summarize the bending capabilities of flexible polymer substrate for general Internet of Things (IoTs) applications. The basic premise is to investigate the flexibility and bending ability of polymer materials as well as their tendency to withstand deformation. We start by providing a chronological order of flexible materials which have been used during the last few decades. In the future, the IoT is expected to support a diverse set of technologies to enable new applications through wireless connectivity. For wearable IoTs, flexibility and bending capabilities of materials are required. This paper provides an overview of some abundantly used polymer substrates and compares their physical, electrical and mechanical properties. It also studies the bending effects on the radiation performance of antenna designs that use polymer substrates. Moreover, we explore a selection of flexible materials for flexible antennas in IoT applications, namely Polyimides (PI), Polyethylene Terephthalate (PET), Polydimethylsiloxane (PDMS), Polytetrafluoroethylene (PTFE), Rogers RT/Duroid and Liquid Crystal Polymer (LCP). The study includes a complete analysis of bending and folding effects on the radiation characteristics such as S-parameters, resonant frequency deviation and the impedance mismatch with feedline of the flexible polymer substrate microstrip antennas. These flexible polymer substrates are useful for future wearable devices and general IoT applications.

3.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233745

RESUMO

There is a significant nascent market for ethically produced products with enormous commercial potential around the world. A reliable method to signal the provenance of products is therefore critical for industry, given that competition based on price is not a viable strategy. The ability to trace and signal ethical treatment of animals is also of significant value to textiles manufactures. The efficacy of such a method can be measured with respect to the cost of implementation, scalability, and the difficulty of counterfeiting. The key to traceability is to win the trust of the consumer about the veracity of this information. Wearable sensors make it possible to monitor and improve the management of traceability and/or provenance. In this paper, we introduce a method for signalling the provenance of garments using radio frequency watermarks. The proposed model consists of two levels of authentication that are easy to use by legitimate vendors, but extremely difficult to imitate or hack, because the watermark is built-in and based on the radiation signature of electroactive materials.

4.
Front Chem ; 8: 88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175306

RESUMO

Conductive biomaterials have recently gained much attention, specifically owing to their application for electrical stimulation of electrically excitable cells. Herein, flexible, electrically conducting, robust fibers composed of both an alginate biopolymer and graphene components have been produced using a wet-spinning process. These nanocomposite fibers showed better mechanical, electrical, and electrochemical properties than did single fibers that were made solely from alginate. Furthermore, with the aim of evaluating the response of biological entities to these novel nanocomposite biofibers, in vitro studies were carried out using C2C12 myoblast cell lines. The obtained results from in vitro studies indicated that the developed electrically conducting biofibers are biocompatible to living cells. The developed hybrid conductive biofibers are likely to find applications as 3D scaffolding materials for tissue engineering applications.

5.
Sensors (Basel) ; 19(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634672

RESUMO

Critical wastewater events such as sewer main blockages or overflows are often not detected until after the fact. These events can be costly, from both an environmental impact and monetary standpoint. A standalone, portable radar device allowing non-invasive benchmarking of sewer pumping station (SPS) pumps is presented. Further, by configuring and deploying a complete Low Power Wide Area Network (LPWAN), Shoalhaven Water (SW) now has the opportunity to create "Internet of Things" (IoT)-capable devices that offer freedom from the reliance on mobile network providers, whilst avoiding congestion on the existing Supervisory Control and Data Acquisition (SCADA) telemetry backbone. This network infrastructure allows for devices capable of real-time monitoring to alert of any system failures, providing an effective tool to proactively capture the current state of the sewer network between the much larger SPSs. This paper presents novel solutions to improve the current wastewater network management procedures employed by SW. This paper also offers a complete review of wastewater monitoring networks and is one of the first to offer robust testing of Long Range Wide Area Network (LoRaWAN) network capabilities in Australia. The paper also provides a comprehensive summary of the LoRa protocol and all its functions. It was found that a LPWAN, utilising the LoRaWAN protocol and deployed appropriately within a geographic area, can attain maximum transmission distances of 20 km within an urban environment and up to 35 km line of sight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...