Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707627

RESUMO

Background and purpose: MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC. Materials and methods: An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes. Results: The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%. Conclusion: The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.

2.
Med Phys ; 51(4): 2354-2366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477841

RESUMO

BACKGROUND: Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition. PURPOSE: We demonstrate real-time cardiac physiology-based radiotherapy beam gating within a preset cardiac phase on an MR-linac. METHODS: MR images were acquired in healthy volunteers (n = 5, mean age = 29.6 years, mean heart-rate (HR) = 56.2 bpm) on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) after obtaining written informed consent. The images were acquired using a single-slice balance steady-state free precession (bSSFP) sequence in the coronal or sagittal plane (TR/TE = 3/1.48 ms, flip angle = 48 ∘ $^{\circ }$ , SENSE = 1.5, field-of-view = 400 × 207 $\text{field-of-view} = {400}\times {207}$ mm 2 ${\text{mm}}^{2}$ , voxel size = 3 × 3 × 15 $3\times 3\times 15$ mm 3 ${\rm mm}^{3}$ , partial Fourier factor = 0.65, frame rate = 13.3 Hz). In parallel, a 4-lead ECG-signal was acquired using MR-compatible equipment. The feasibility of ECG-based beam gating was demonstrated with a prototype gating workflow using a Quasar MRI4D motion phantom (IBA Quasar, London, ON, Canada), which was deployed in the bore of the MR-linac. Two volunteer-derived combined ECG-motion traces (n = 2, mean age = 26 years, mean HR = 57.4 bpm, peak-to-peak amplitude = 14.7 mm) were programmed into the phantom to mimic dose delivery on a cardiac target in breath-hold. Clinical ECG-equipment was connected to the phantom for ECG-voltage-streaming in real-time using research software. Treatment beam gating was performed in the quiescent phase (end-diastole). System latencies were compensated by delay time correction. A previously developed MRI-based gating workflow was used as a benchmark in this study. A 15-beam intensity-modulated radiotherapy (IMRT) plan ( 1 × 6.25 ${1}\times {6.25}$ Gy) was delivered for different motion scenarios onto radiochromic films. Next, cardiac motion was then estimated at the basal anterolateral myocardial wall via normalized cross-correlation-based template matching. The estimated motion signal was temporally aligned with the ECG-signal, which were then used for position- and ECG-based gating simulations in the cranial-caudal (CC), anterior-posterior (AP), and right-left (RL) directions. The effect of gating was investigated by analyzing the differences in residual motion at 30, 50, and 70% treatment beam duty cycles. RESULTS: ECG-based (MRI-based) beam gating was performed with effective duty cycles of 60.5% (68.8%) and 47.7% (50.4%) with residual motion reductions of 62.5% (44.7%) and 43.9% (59.3%). Local gamma analyses (1%/1 mm) returned pass rates of 97.6% (94.1%) and 90.5% (98.3%) for gated scenarios, which exceed the pass rates of 70.3% and 82.0% for nongated scenarios, respectively. In average, the gating simulations returned maximum residual motion reductions of 88%, 74%, and 81% at 30%, 50%, and 70% duty cycles, respectively, in favor of MRI-based gating. CONCLUSIONS: Real-time ECG-based beam gating is a feasible alternative to MRI-based gating, resulting in improved dose delivery in terms of high γ -pass $\gamma {\text{-pass}}$ rates, decreased dose deposition outside the PTV and residual motion reduction, while by-passing cardiac MRI challenges.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Adulto , Imageamento por Ressonância Magnética , Suspensão da Respiração , Movimento (Física) , Software , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 25(1): e14180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011008

RESUMO

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.


Assuntos
Aceleradores de Partículas , Dosímetros de Radiação , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Radiometria/métodos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos
4.
Semin Radiat Oncol ; 34(1): 14-22, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105089

RESUMO

MR-Guided Radiation Therapy (MRIgRT) has been made possible only due to the ingenuity and commitment of commercial radiation therapy system vendors. Unlike conventional linear accelerator systems, MRIgRT systems have had to overcome significant and previously untested techniques to integrate the MRI systems with the radiation therapy delivery systems. Each of these three commercial systems has developed different approaches to integrating their MR and Linac functions. Each has also decided on a different main magnetic field strength, from 0.35T to 1.5T, as well as different design philosophies for other systems, such as the patient support assembly and treatment planning workflow. This paper is intended to provide the reader with a detailed understanding of each system's configuration so that the reader can better interpret the scientific literature concerning these commercial MRIgRT systems.


Assuntos
Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Fluxo de Trabalho , Planejamento da Radioterapia Assistida por Computador
5.
Phys Med Biol ; 69(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048629

RESUMO

Medical image registration is an integral part of various clinical applications including image guidance, motion tracking, therapy assessment and diagnosis. We present a robust approach for mono-modal and multi-modal medical image registration. To this end, we propose the novel shape operator based local image distance (SOLID) which estimates the similarity of images by comparing their second-order curvature information. Our similarity metric is rigorously tailored to be suitable for comparing images from different medical imaging modalities or image contrasts. A critical element of our method is the extraction of local features using higher-order shape information, enabling the accurate identification and registration of smaller structures. In order to assess the efficacy of the proposed similarity metric, we have implemented a variational image registration algorithm that relies on the principle of matching the curvature information of the given images. The performance of the proposed algorithm has been evaluated against various alternative state-of-the-art variational registration algorithms. Our experiments involve mono-modal as well as multi-modal and cross-contrast co-registration tasks in a broad variety of anatomical regions. Compared to the evaluated alternative registration methods, the results indicate a very favorable accuracy, precision and robustness of the proposed SOLID method in various highly challenging registration tasks.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
6.
Phys Imaging Radiat Oncol ; 28: 100507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38035206

RESUMO

Background and purpose: Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration. Materials and methods: We experimentally verified the total dose, measured on external beam therapy 3 (EBT3) film, using a treatment with five online adapted fractions. Three series of experiments were performed, each focusing on a category of inter-fractional variation; translations, rotations and body modifications. Variations were introduced during each fraction and adapted plans were generated and irradiated. Single fraction doses and total doses over five online adapted fractions were investigated. Results: The online adapted measurements and calculations showed a good agreement for single fractions and multi-fraction treatments for the dose profiles, gamma passing rates, dose deviations and distances to agreement. The gamma passing rate using a 2%/2 mm criterion ranged from 99.2% to 99.5% for a threshold dose of 10% of the maximum dose (Dmax) and from 96.2% to 100% for a threshold dose of 90% of Dmax, for the total translations, rotations and body modifications. Conclusions: The total doses of multi-fraction treatments showed similar accuracies compared to single fraction treatments, indicating an accurate dosimetric outcome of a multi-fraction treatment in adaptive magnetic resonance imaging guided radiotherapy.

7.
Radiother Oncol ; 189: 109932, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778533

RESUMO

This work reports on the first seven patients treated with gating and baseline drift correction on the high-field MR-Linac system. Dosimetric analysis showed that the active motion management system improved congruence to the planned dose, efficiently mitigating detrimental effects of intrafraction motion in the upper abdomen.


Assuntos
Neoplasias Abdominais , Radioterapia de Intensidade Modulada , Humanos , Movimento , Movimento (Física) , Radiometria , Neoplasias Abdominais/radioterapia , Planejamento da Radioterapia Assistida por Computador
8.
Phys Imaging Radiat Oncol ; 27: 100483, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37664798

RESUMO

Background and Purpose: Deformable image registration (DIR) is a core element of adaptive radiotherapy workflows, integrating daily contour propagation and/or dose accumulation in their design. Propagated contours are usually manually validated and may be edited, thereby locally invalidating the registration result. This means the registration cannot be used for dose accumulation. In this study we proposed and evaluated a novel multi-modal DIR algorithm that incorporated contour information to guide the registration. This integrates operator-validated contours with the estimated deformation vector field and warped dose. Materials and Methods: The proposed algorithm consisted of both a normalized gradient field-based data-fidelity term on the images and an optical flow data-fidelity term on the contours. The Helmholtz-Hodge decomposition was incorporated to ensure anatomically plausible deformations. The algorithm was validated for same- and cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography (CT) registrations, and CT-to-MR registrations for different anatomies, all based on challenging clinical situations. The contour-correspondence, anatomical fidelity, registration error, and dose warping error were evaluated. Results: The proposed contour-guided algorithm considerably and significantly increased contour overlap, decreasing the mean distance to agreement by a factor of 1.3 to 13.7, compared to the best algorithm without contour-guidance. Importantly, the registration error and dose warping error decreased significantly, by a factor of 1.2 to 2.0. Conclusions: Our contour-guided algorithm ensured that the deformation vector field and warped quantitative information were consistent with the operator-validated contours. This provides a feasible semi-automatic strategy for spatially correct warping of quantitative information even in difficult and artefacted cases.

9.
Phys Imaging Radiat Oncol ; 26: 100434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034029

RESUMO

Background and purpose: Online adaptive magnetic resonance (MR)-guided treatment planning for pancreatic tumors on 1.5T systems typically employs Cartesian 3D T 2w magnetic resonance imaging (MRI). The main disadvantage of this sequence is that respiratory motion results in substantial blurring in the abdomen, which can hamper delineation accuracy. This study investigated the use of two motion-robust radial MRI sequences as main delineation scan for pancreatic MR-guided radiotherapy. Materials and methods: Twelve patients with pancreatic tumors were imaged with a 3D T 2w scan, a Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) scan (partially overlapping strips), and a 3D Vane scan (stack-of-stars), on a 1.5T MR-Linac under abdominal compression. The scans were assessed by three radiation oncologists for their suitability for online adaptive delineation. A quantitative comparison was made for gradient entropy and the effect of motion on apparent target position. Results: The PROPELLER scans were selected as first preference in 56% of the cases, the 3D T 2w in 42% and the 3D Vane in 3%. PROPELLER scans sometimes contained a large interslice variation which would have compromised delineation. Gradient entropy was significantly higher in 3D T 2w patient scans. The apparent target position was more sensitive to motion amplitude in the PROPELLER scans, but substantial offsets did not occur under 10 mm peak-to-peak. Conclusion: PROPELLER MRI may be a superior imaging sequence for pancreatic MRgRT compared to standard Cartesian sequences. The large interslice variation should be mitigated through further sequence optimization before PROPELLER can be adopted for online treatment adaptation.

10.
Med Phys ; 50(9): 5715-5722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36932727

RESUMO

BACKGROUND: Deformable image registration is increasingly used in radiotherapy to adapt the treatment plan and accumulate the delivered dose. Consequently, clinical workflows using deformable image registration require quick and reliable quality assurance to accept registrations. Additionally, for online adaptive radiotherapy, quality assurance without the need for an operator to delineate contours while the patient is on the treatment table is needed. Established quality assurance criteria such as the Dice similarity coefficient or Hausdorff distance lack these qualities and also display a limited sensitivity to registration errors beyond soft tissue boundaries. PURPOSE: The purpose of this study is to investigate the existing intensity-based quality assurance criteria structural similarity and normalized mutual information for their ability to quickly and reliably identify registration errors for (online) adaptive radiotherapy and compare them to contour-based quality assurance criteria. METHODS: All criteria were tested using synthetic and simulated biomechanical deformations of 3D MR images as well as manually annotated 4D CT data. The quality assurance criteria were scored for classification performance, for their ability to predict the registration error, and for their spatial information. RESULTS: We found that besides being fast and operator-independent, the intensity-based criteria have the highest area under the receiver operating characteristic curve and provide the best input for models to predict the registration error on all data sets. Structural similarity furthermore provides spatial information with a higher gamma pass rate of the predicted registration error than commonly used spatial quality assurance criteria. CONCLUSIONS: Intensity-based quality assurance criteria can provide the required confidence in decisions about using mono-modal registrations in clinical workflows. They thereby enable automated quality assurance for deformable image registration in adaptive radiotherapy treatments.


Assuntos
Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Algoritmos , Imageamento Tridimensional , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
11.
Radiother Oncol ; 182: 109506, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736589

RESUMO

BACKGROUND AND PURPOSE: In MR-guided SBRT of pancreatic cancer, intrafraction motion is typically monitored with (interleaved) 2D cine MRI. However, tumor surroundings are often not fully captured in these images, and motion might be distorted by through-plane movement. In this study, the feasibility of highly accelerated 3D cine MRI to reconstruct the delivered dose during MR-guided SBRT was assessed. MATERIALS AND METHODS: A 3D cine MRI sequence was developed for fast, time-resolved 4D imaging, featuring a low spatial resolution that allows for rapid volumetric imaging at 430 ms. The 3D cines were acquired during the entire beam-on time of 23 fractions of online adaptive MR-guided SBRT for pancreatic tumors on a 1.5 T MR-Linac. A 3D deformation vector field (DVF) was extracted for every cine dynamic using deformable image registration. Next, these DVFs were used to warp the partial dose delivered in the time interval between consecutive cine acquisitions. The warped dose plans were summed to obtain a total delivered dose. The delivered dose was also calculated under various motion correction strategies. Key DVH parameters of the GTV, duodenum, small bowel and stomach were extracted from the delivered dose and compared to the planned dose. The uncertainty of the calculated DVFs was determined with the inverse consistency error (ICE) in the high-dose regions. RESULTS: The mean (SD) relative (ratio delivered/planned) D99% of the GTV was 0.94 (0.06), and the mean (SD) relative D0.5cc of the duodenum, small bowel, and stomach were respectively 0.98 (0.04), 1.00 (0.07), and 0.98 (0.06). In the fractions with the lowest delivered tumor coverage, it was found that significant lateral drifts had occurred. The DVFs used for dose warping had a low uncertainty with a mean (SD) ICE of 0.65 (0.07) mm. CONCLUSION: We employed a fast, real-time 3D cine MRI sequence for dose reconstruction in the upper abdomen, and demonstrated that accurate DVFs, acquired directly from these images, can be used for dose warping. The reconstructed delivered dose showed only a modest degradation of tumor coverage, mostly attainable to baseline drifts. This emphasizes the need for motion monitoring and development of intrafraction treatment adaptation solutions, such as baseline drift corrections.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Imagem Cinética por Ressonância Magnética , Radiocirurgia/métodos , Estudos de Viabilidade , Radioterapia Guiada por Imagem/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética
12.
Med Phys ; 50(1): 397-409, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36210631

RESUMO

BACKGROUND: Lung stereotactic body radiotherapy (SBRT) has proven an effective treatment for medically inoperable lung tumors, even for (ultra-)central tumors. Recently, there has been growing interest in radiation-induced cardiac toxicity in lung radiotherapy. More specifically, dose to cardiac (sub-)structures (CS) was found to correlate with survival after radiotherapy. PURPOSE: Our goal is first, to investigate the percentage of patients who require CS sparing in an magnetic resonance imaging guided lung SBRT workflow, and second, to quantify how successful implementation of cardiac sparing would be. METHODS: The patient cohort consists of 34 patients with stage II-IV lung cancer who were treated with SBRT between 2017 and 2020. A mid-position computed tomography (CT) image was used to create treatment plans for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) following clinical templates. Under guidance of a cardio-thoracic radiologist, 11 CS were contoured manually for each patient. Dose constraints for five CS were extracted from the literature. Patients were stratified according to their need for cardiac sparing depending on the CS dose in their non-CS constrained MR-linac treatment plans. Cardiac sparing treatment plans (CSPs) were then created and dosimetrically compared with their non-CS constrained treatment plan counterparts. CSPs complied with the departmental constraints and were considered successful when fulfilling all CS constraints, and partially successful if some CS constraints could be fulfilled. Predictors for the need for and feasibility of cardiac sparing were explored, specifically planning target volume (PTV) size, cranio-caudal (CC) distance, 3D distance, and in-field overlap volume histograms (iOVH). RESULTS: 47% of the patients (16 out of 34) were in need of cardiac sparing. A successful CSP could be created for 62.5% (10 out of 16) of these patients. Partially successful CSPs still complied with two to four CS constraints. No significant difference in dose to organs at risk (OARs) or targets was identified between CSPs and the corresponding non-CS constrained MR-linac plans. The need for cardiac sparing was found to correlate with distance in the CC direction between target and all of the individual CS (Mann-Whitney U-test p-values <10-6 ). iOVHs revealed that complying with dose constraints for CS is primarily determined by in-plane distance and secondarily by PTV size. CONCLUSION: We demonstrated that CS can be successfully spared in lung SBRT on the MR-linac for most of this patient cohort, without compromising doses to the tumor or to other OARs. CC distance between the target and CS can be used to predict the need for cardiac sparing. iOVHs, in combination with PTV size, can be used to predict if cardiac sparing will be successful for all constrained CS except the left ventricle.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos de Viabilidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pulmão , Imageamento por Ressonância Magnética/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
14.
Radiother Oncol ; 176: 25-30, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113777

RESUMO

BACKGROUND: Intrafraction motion during radiotherapy limits margin reduction and dose escalation. Magnetic resonance (MR)-guided linear accelerators (MR-Linac) have emphasised this issue by enabling intrafraction imaging. We present and clinically apply a new workflow to counteract systematic intrafraction motion during MR-guided stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: With the sub-fractionation workflow, the daily dose is delivered in multiple sequential parts (sub-fractions), each adapted to the latest anatomy. As each sub-fractionation treatment plan complies with the dose constraints, no online dose accumulation is required. Imaging and treatment planning are executed in parallel with dose delivery to minimise dead time, enabling an efficient workflow. The workflow was implemented on a 1.5 T MR-Linac and applied in 15 prostate cancer (PCa) patients treated with 5 × 7.25 Gy in two sub-fractions of 3.625 Gy (10 × 3.625 Gy in total). Intrafraction clinical target volume (CTV) motion was determined and compared to a workflow with single-plan delivery. Furthermore, required planning target volume (PTV) margins were determined. RESULTS: Average on-table time was 42.7 min. Except for two fractions, all fractions were delivered within 60 min. Average intrafraction 3D CTV displacement (±standard deviation) was 1.1 mm (± 0.7) with the sub-fractionation workflow, whereas this was up to 3.5 mm (± 2.4) without sub-fractionation. Calculated PTV margins required with sub-fractionation were 1.0 mm (left-right), 2.4 mm (cranial-caudal), and 2.6 mm (anterior-posterior). CONCLUSION: Feasibility of the sub-fractionation workflow was demonstrated in 15 PCa patients treated with two sub-fractions on a 1.5 T MR-Linac. The workflow allows for significant PTV margin reduction in these patients by reducing systematic intrafraction motion during SBRT.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Próstata , Fluxo de Trabalho , Aceleradores de Partículas , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Espectroscopia de Ressonância Magnética
15.
Phys Med Biol ; 67(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36041431

RESUMO

Objective. Intrafraction motion is a major concern for the safety and effectiveness of high dose stereotactic body radiotherapy (SBRT) in the upper abdomen. In this study, the impact of the intrafraction motion on the delivered dose was assessed in a patient group that underwent MR-guided radiotherapy for upper abdominal malignancies with an abdominal corset.Approach. Fast online 2D cine MRI was used to extract tumor motion during beam-on time. These tumor motion profiles were combined with linac log files to reconstruct the delivered dose in 89 fractions of MR-guided SBRT in twenty patients. Aside the measured tumor motion, motion profiles were also simulated for a wide range of respiratory amplitudes and drifts, and their subsequent dosimetric impact was calculated in every fraction.Main results. The average (SD)D99%of the gross tumor volume (GTV), relative to the plannedD99%, was 0.98 (0.03). The average (SD) relativeD0.5ccof the duodenum, small bowel and stomach was 0.99 (0.03), 1.00 (0.03), and 0.97 (0.05), respectively. No correlation of respiratory amplitude with dosimetric impact was observed. Fractions with larger baseline drifts generally led to a larger uncertainty of dosimetric impact on the GTV and organs at risk (OAR). The simulations yielded that the delivered dose is highly dependent on the direction of on baseline drift. Especially in anatomies where the OARs are closely abutting the GTV, even modestLRorAPdrifts can lead to substantial deviations from the planned dose.Significance. The vast majority of the fractions was only modestly impacted by intrafraction motion, increasing our confidence that MR-guided SBRT with abdominal compression can be safely executed for patients with abdominal tumors, without the use of gating or tracking strategies.


Assuntos
Neoplasias Abdominais , Neoplasias Pancreáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Abdome , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Humanos , Movimento (Física) , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Radiometria , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
16.
Phys Imaging Radiat Oncol ; 23: 66-73, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814260

RESUMO

Background and purpose: Magnetic resonance (MR)-linac delivery is expected to improve organ at risk (OAR) sparing. In this study, OAR doses were compared for online adaptive MR-linac treatments and conventional cone beam computed tomography (CBCT)-linac radiotherapy, taking into account differences in clinical workflows, especially longer session times for MR-linac delivery. Materials and methods: For 25 patients with pelvic/abdominal lymph node oligometastases, OAR doses were calculated for clinical pre-treatment and daily optimized 1.5 T MR-linac treatment plans (5 × 7 Gy) and compared with simulated CBCT-linac plans for the pre-treatment and online anatomical situation. Bowelbag and duodenum were re-contoured on MR-imaging acquired before, during and after each treatment session. OAR hard constraint violations, D0.5cc and D10cc values were evaluated, focusing on bowelbag and duodenum. Results: Overall, hard constraints for all OAR were violated less often in daily online MR-linac treatment plans compared with CBCT-linac: in 5% versus 22% of fractions, respectively. D0.5cc and D10cc values did not differ significantly. When taking treatment duration and intrafraction motion into account, estimated delivered doses to bowelbag and duodenum were lower with CBCT-linac if identical planning target volume (PTV) margins were used for both modalities. When reduced PTV margins were achievable with MR-linac treatment, bowelbag doses were lower compared with CBCT-linac. Conclusions: Compared with CBCT-linac treatments, the online adaptive MR-linac approach resulted in fewer hard planning constraint violations compared with single-plan CBCT-linac delivery. With respect to other bowelbag/duodenum dose-volume parameters, the longer duration of MR-linac treatment sessions negatively impacts the potential dosimetric benefit of daily adaptive treatment planning.

17.
Radiother Oncol ; 174: 149-157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817325

RESUMO

BACKGROUND AND PURPOSE: VMAT is not currently available on MR-linacs but could maximize plan conformality. To mitigate respiration without compromising delivery efficiency, MRI-guided MLC tumour tracking was recently developed for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) in combination with IMRT. Here, we provide a first experimental demonstration of VMAT + MLC tracking for several lung SBRT indications. MATERIALS AND METHODS: We created central patient and phantom VMAT plans (8×7.5 Gy, 2 arcs) and we created peripheral phantom plans (3×18 & 1×34 Gy, 4 arcs). A motion phantom mimicked subject-recorded respiratory motion (A‾=11 mm, f‾=0.33 Hz, drift‾=0.3 mm/min). This was monitored using 2D-cine MRI at 4 Hz to continuously realign the beam with the target. VMAT + MLC tracking performance was evaluated using 2D film dosimetry and a novel motion-encoded and time-resolved pseudo-3D dosimetry approach. RESULTS: We found an MLC leaf and jaw end-to-end latency of 328.05(±3.78) ms and 317.33(±4.64) ms, which was mitigated by a predictor. The VMAT plans required maximum MLC speeds of 12.1 cm/s and MLC tracking superimposed an additional 1.48 cm/s. A local 2%/1 mm gamma analysis with a static measurement as reference, revealed pass-rates of 28-46% without MLC tracking and 88-100% with MLC tracking for the 2D film analysis. Similarly, the pseudo-3D gamma passing-rates increased from 22-77% to 92-100%. The dose area histograms showed that MLC tracking increased the GTV D98% by 5-20% and the PTV D95% by 7-24%, giving similar target coverage as their respective static reference. CONCLUSION: MRI-guided VMAT + MLC tracking is technically feasible on the MR-linac and results in highly conformal dose distribution.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Imageamento por Ressonância Magnética , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
18.
Med Phys ; 49(9): 6068-6081, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35694905

RESUMO

PURPOSE: Respiratory motion management is important in abdominothoracic radiotherapy. Fast imaging of the tumor can facilitate multileaf collimator (MLC) tracking that allows for smaller treatment margins, while repeatedly imaging the full field-of-view is necessary for 4D dose accumulation. This study introduces a hybrid 2D/4D-MRI methodology that can be used for simultaneous MLC tracking and dose accumulation on a 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden). METHODS: We developed a hybrid 2D/4D-MRI methodology that uses a simultaneous multislice (SMS) accelerated MRI sequence, which acquires two coronal slices simultaneously and repeatedly cycles through slice positions over the image volume. As a result, the fast 2D imaging can be used prospectively for MLC tracking and the SMS slices can be sorted retrospectively into respiratory-correlated 4D-MRIs for dose accumulation. Data were acquired in five healthy volunteers with an SMS-bTFE and SMS-TSE MRI sequence. For each sequence, a prebeam dataset and a beam-on dataset were acquired simulating the two phases of MR-linac treatments. Prebeam data were used to generate a 4D-based motion model and a reference mid-position volume, while beam-on data were used for real-time motion extraction and reconstruction of beam-on 4D-MRIs. In addition, an in-silico computational phantom was used for validation of the hybrid 2D/4D-MRI methodology. MLC tracking experiments were performed with the developed methodology, for which real-time SMS data reconstruction was enabled on the scanner. A 15-beam 8× 7.5 Gy intensity-modulated radiotherapy plan for lung stereotactic body radiotherapy with isotropic 3 mm GTV-to-PTV margins was created. Dosimetry experiments were performed using a 4D motion phantom. The latency between target motion and updating the radiation beam was determined and compensated. Local gamma analyses were performed to quantify dose differences compared to a static reference delivery, and dose area histograms (DAHs) were used to quantify the GTV and PTV coverage. RESULTS: In-vivo data acquisition and MLC tracking experiments were successfully performed with the developed hybrid 2D/4D-MRI methodology. Real-time liver-lung interface motion estimation had a Pearson's correlation of 0.996 (in-vivo) and 0.998 (in-silico). A median (5th-95th percentile) error of 0.0 (-0.9 to 0.7) mm and 0.0 (-0.2 to 0.2) mm was found for real-time motion estimation for in-vivo and in-silico, respectively. Target motion prediction beyond the liver-lung interface had a median root mean square error of 1.6 mm (in-vivo) and 0.5 mm (in-silico). Beam-on 4D MRI reconstruction required a median amount of data equal to an acquisition time of 2:21-3:17 min, which was 20% less data compared to the prebeam-derived 4D-MRI. System latency was reduced from 501 ± 12 ms to -1 ± 3 ms (SMS-TSE) and from 398 ± 10 ms to -10 ± 4 ms (SMS-bTFE) by a linear regression prediction filter. The local gamma analysis agreed within - 3.8 % $-3.8\%$ to 3.3% (SMS-bTFE) and - 5.3 % $-5.3\%$ to 10% (SMS-TSE) with a reference MRI sequence. The DAHs revealed a relative D 98 % $D_{98\%}$ GTV coverage between 97% and 100% (SMS-bTFE) and 100% and 101% (SMS-TSE) compared to the static reference. CONCLUSIONS: The presented 2D/4D-MRI methodology demonstrated the potential for accurately extracting real-time motion for MLC tracking in abdominothoracic radiotherapy, while simultaneously reconstructing contiguous respiratory-correlated 4D-MRIs for dose accumulation.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
19.
Radiother Oncol ; 171: 182-188, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489444

RESUMO

BACKGROUND AND PURPOSE: Magnetic resonance (MR)-guided linear accelerators (MR-Linac) enable accurate estimation of delivered doses through dose accumulation using daily MR images and treatment plans. We aimed to assess the association between the accumulated bladder (wall) dose and patient-reported acute urinary toxicity in prostate cancer (PCa) patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS: One-hundred-and-thirty PCa patients treated on a 1.5 T MR-Linac were included. Patients filled out International Prostate Symptom Scores (IPSS) questionnaires at baseline, 1 month, and 3 months post-treatment. Deformable image registration-based dose accumulation was performed to reconstruct the delivered dose. Dose parameters for both bladder and bladder wall were correlated with a clinically relevant increase in IPSS (≥ 10 points) and/or start of alpha-blockers within 3 months using logistic regression. RESULTS: Thirty-nine patients (30%) experienced a clinically relevant IPSS increase and/or started with alpha-blockers. Bladder D5cm3, V10-35Gy (in %), and Dmean and Bladder wall V10-35Gy (cm3 and %) and Dmean were correlated with the outcome (odds ratios 1.04-1.33, p-values 0.001-0.044). Corrected for baseline characteristics, bladder V10-35Gy (in %) and Dmean and bladder wall V10-35Gy (cm3 and %) and Dmean were still correlated with the outcome (odds ratios 1.04-1.30, p-values 0.001-0.028). Bladder wall parameters generally showed larger AUC values. CONCLUSION: This is the first study to assess the correlation between accumulated bladder wall dose and patient-reported urinary toxicity in PCa patients treated with MR-guided SBRT. The dose to the bladder wall is a promising parameter for prediction of patient-reported urinary toxicity and therefore warrants prospective validation and consideration in treatment planning.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Masculino , Medidas de Resultados Relatados pelo Paciente , Neoplasias da Próstata/patologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/métodos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia
20.
Phys Imaging Radiat Oncol ; 21: 62-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35243033

RESUMO

To facilitate full intra-fraction adaptive MR-guided radiotherapy, accurate contour propagation is needed. We aimed to assess the clinical usability of intra-fraction propagated contours by a deformable image registration algorithm in ten prostate cancer patients. Two observers judged the contours on need for manual adaptation and feasibility of adapting contours within 3 min. CTV and bladder contours needed none or only minor editing in most cases (≥ 97%), whereas rectum contours needed more extensive editing in 12-23%. Nevertheless, adaptation times were < 3 min for ≥ 93% of the cases. This paves the way for exploring adaptive workflows using intra-fraction deformable contour propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...