Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32123686

RESUMO

Electrocardiographic Imaging (ECGI) aims to reconstruct electrograms from the body surface potential measurements. Bad leads are usually excluded from the inverse problem solution. Alternatively, interpolation can be applied. This study explores how sensitive ECGI is to different bad-lead configurations and interpolation methods. Experimental data from a Langendorff-perfused pig heart suspended in a human-shaped torso-tank was used. Epicardial electrograms were acquired during 30 s (31 beats) of RV pacing using a 108-electrode array, simultaneously with torso potentials from 128 electrodes embedded in the tank surface. Six different bad lead cases were designed based on clinical experience. Inverse problem was solved by applying Tikhonov regularization i) using the complete data, ii) bad-leads-removed data, and iii) interpolated data, with 5 different methods. Our results showed that ECGI accuracy of an interpolation method highly depends on the location of the bad leads. If they are in the high-potential-gradient regions of the torso, a highly accurate interpolation method is needed to achieve an ECGI accuracy close to using complete data. If the BSP reconstruction of the interpolation method is poor in these regions, the reconstructed electrograms also have lower accuracy, suggesting that bad leads should be removed instead of interpolated. The inverse-forward method was found to be the best among all interpolation methods applied in this study in terms of both missing BSP lead reconstruction and ECGI accuracy, even for the bad leads located over the chest.

2.
Physiol Meas ; 37(7): 1129-45, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27328164

RESUMO

Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.


Assuntos
Algoritmos , Cardioversão Elétrica , Impedância Elétrica , Átrios do Coração/fisiopatologia , Animais , Função Atrial/fisiologia , Modelos Cardiovasculares , Estudos Retrospectivos , Carneiro Doméstico , Software
3.
Water Sci Technol ; 48(4): 163-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14531435

RESUMO

Membrane separation proved to be an excellent means to maintain high residence time of microorganisms in an anaerobic hydrolysis reactor, and relatively low concentration of hydrolysis products. The microbial biocommunity typical for the rumen environment could be maintained, and the reactor efficiency of the reactor improved. Less than 4 days were reqired to reach almost complete hydrolysis of the grass fed into the reactor. To avoid blocking of the membrane unit, a backwash system is necessary. The membranes needed to be backwashed every 20 min with 4 bar gas-pressure for 10 s. After this treatment the initial permeability was regained. The plant was operated with a flux of 12 ml h(-1) cm(-2) on average. The transmembrane pressure was in the range of 0.8-0.9 bar. 90% of the dissolved fatty acids permeated through the membrane.


Assuntos
Reatores Biológicos , Celulose/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , Animais , Bactérias Anaeróbias , Filtração , Hidrólise , Dinâmica Populacional , Rúmen , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...